http://www.lydsy.com/JudgeOnline/problem.php?id=3301

其实这一题很早就a过了,但是那时候看题解写完也是似懂非懂的。。。。

听zyf神犇说是康托展开,然后拖到今天才来看看。。。

sad。。

从不知道那里来的文档里边抄的:

康托展开就是一种特殊的哈希函数,它的使用范围是对于n个数的排列进行状态的压缩和存储。
X=a[n]*(n-1)!+a[n-1]*(n-2)!+…+a[i]*(i-1)!+…+a[2]*1!+a[1]*0!
其中,a为整数,并且0<=a[i]<i(1<=i<=n)
再举个例子:1324是{1,2,3,4}排列数中第几个大的数:第一位是1小于1的数没有,是0个 0*3! 第二位是3小于3的数有1和2,但1已经在第一位了,所以只有一个数2 1*2! 。第三位是2小于2的数是1,但1在第一位,所以有0个数 0*1! ,所以比1324小的排列有0*3!+1*2!+0*1!=2个,1324是第三个大数。
例:{1,2,3,4,5}的全排列
(1)找出第96个数
首先用96-1得到95
用95去除4! 得到3余23
用23去除3! 得到3余5
用5去除2!得到2余1
用1去除1!得到1余0
有3个数比它小的数是4,所以第一位是4
有3个数比它小的数是4,但4已经在之前出现过了,所以是5(因为4在之前出现过了所以实际比5小的数是3个)
有2个数比它小的数是3
有1个数比它小的数是2
最后一个数只能是1
所以这个数是45321
(2)找出第16个数
首先用16-1得到15
用15去除4!得到0余15
用15去除3!得到2余3
用3去除2!得到1余1
用1去除1!得到1余0
有0个数比它小的数是1
有2个数比它小的数是3, 但由于1已经在之前出现过了,所以是4(因为1在之前出现过了所以实际比4小的数是2)
有1个数比它小的数是2, 但由于1已经在之前出现过了,所以是3(因为1在之前出现过了所以实际比3小的数是1)
有1个数比它小得数是2, 但由于1,3,4已经在之前出现过了,所以是5(因为1,3,4在之前出现过了所以实际比5小的数是1)
最后一个数只能是2
所以这个数是14352。

所以我们暴力模拟找第k个没有使用过的值然后搞搞就行了。

注意read要开longlong啊啊啊啊

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const ll getint() { ll r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } int vis[105], n, cs, a[105];
ll m, p[50], ans; int main() {
read(n); read(cs);
p[0]=1;
for1(i, 1, 25) p[i]=p[i-1]*(ll)i;
char s[3];
rep(tt, cs) {
int j, k, t;
scanf("%s", s);
CC(vis, 0);
if(s[0]=='P') {
read(m); --m;
for3(i, n, 1) {
k=m/p[i-1]; m%=p[i-1];
for(j=1, t=0; t<=k; ++j) if(!vis[j]) ++t;
a[i]=j-1;
vis[j-1]=1;
}
for3(i, n, 2) printf("%d ", a[i]); printf("%d\n", a[1]);
}
else {
ans=0;
for3(i, n, 1) read(a[i]);
for3(i, n, 1) {
for(j=1, t=0; j<a[i]; ++j) if(!vis[j]) ++t;
ans+=(ll)t*p[i-1];
vis[a[i]]=1;
}
printf("%lld\n", ans+1);
}
}
return 0;
}

Description

The N (1 <= N <= 20) cows conveniently numbered 1...N are playing 
yet another one of their crazy games with Farmer John. The cows 
will arrange themselves in a line and ask Farmer John what their 
line number is. In return, Farmer John can give them a line number 
and the cows must rearrange themselves into that line. 
A line number is assigned by numbering all the permutations of the 
line in lexicographic order.

Consider this example: 
Farmer John has 5 cows and gives them the line number of 3. 
The permutations of the line in ascending lexicographic order: 
1st: 1 2 3 4 5 
2nd: 1 2 3 5 4 
3rd: 1 2 4 3 5 
Therefore, the cows will line themselves in the cow line 1 2 4 3 5.

The cows, in return, line themselves in the configuration "1 2 5 3 4" and 
ask Farmer John what their line number is.

Continuing with the list: 
4th : 1 2 4 5 3 
5th : 1 2 5 3 4 
Farmer John can see the answer here is 5

Farmer John and the cows would like your help to play their game. 
They have K (1 <= K <= 10,000) queries that they need help with. 
Query i has two parts: C_i will be the command, which is either 'P' 
or 'Q'.

If C_i is 'P', then the second part of the query will be one integer 
A_i (1 <= A_i <= N!), which is a line number. This is Farmer John 
challenging the cows to line up in the correct cow line.

If C_i is 'Q', then the second part of the query will be N distinct 
integers B_ij (1 <= B_ij <= N). This will denote a cow line. These are the 
cows challenging Farmer John to find their line number.

有N头牛,分别用1……N表示,排成一行。 
将N头牛,所有可能的排列方式,按字典顺序从小到大排列起来。 
例如:有5头牛 
1st: 1 2 3 4 5 
2nd: 1 2 3 5 4 
3rd: 1 2 4 3 5 
4th : 1 2 4 5 3 
5th : 1 2 5 3 4 
…… 
现在,已知N头牛的排列方式,求这种排列方式的行号。 
或者已知行号,求牛的排列方式。 
所谓行号,是指在N头牛所有可能排列方式,按字典顺序从大到小排列后,某一特定排列方式所在行的编号。 
如果,行号是3,则排列方式为1 2 4 3 5 
如果,排列方式是 1 2 5 3 4 则行号为5

有K次问答,第i次问答的类型,由C_i来指明,C_i要么是‘P’要么是‘Q’。 
当C_i为P时,将提供行号,让你答牛的排列方式。当C_i为Q时,将告诉你牛的排列方式,让你答行号。

Input

* Line 1: Two space-separated integers: N and K 
* Lines 2..2*K+1: Line 2*i and 2*i+1 will contain a single query. 
Line 2*i will contain just one character: 'Q' if the cows are lining 
up and asking Farmer John for their line number or 'P' if Farmer 
John gives the cows a line number.

If the line 2*i is 'Q', then line 2*i+1 will contain N space-separated 
integers B_ij which represent the cow line. If the line 2*i is 'P', 
then line 2*i+1 will contain a single integer A_i which is the line 
number to solve for.

第1行:N和K 
第2至2*K+1行:Line2*i ,一个字符‘P’或‘Q’,指明类型。 
如果Line2*i是P,则Line2*i+1,是一个整数,表示行号; 
如果Line2*i+1 是Q ,则Line2+i,是N个空格隔开的整数,表示牛的排列方式。

Output

* Lines 1..K: Line i will contain the answer to query i.

If line 2*i of the input was 'Q', then this line will contain a 
single integer, which is the line number of the cow line in line 
2*i+1.

If line 2*i of the input was 'P', then this line will contain N 
space separated integers giving the cow line of the number in line 
2*i+1. 
第1至K行:如果输入Line2*i 是P,则输出牛的排列方式;如果输入Line2*i是Q,则输出行号

Sample Input

5 2
P
3
Q
1 2 5 3 4

Sample Output

1 2 4 3 5
5

HINT

 

Source

【BZOJ】3301: [USACO2011 Feb] Cow Line(康托展开)的更多相关文章

  1. [BZOJ] 3301: [USACO2011 Feb] Cow Line

    康拓展开/逆展开 模板 #include<algorithm> #include<iostream> #include<cstdio> #define int lo ...

  2. 3301: [USACO2011 Feb] Cow Line

    3301: [USACO2011 Feb] Cow Line Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 82  Solved: 49[Submit ...

  3. BZOJ3301: [USACO2011 Feb] Cow Line

    3301: [USACO2011 Feb] Cow Line Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 67  Solved: 39[Submit ...

  4. [洛谷P3014][USACO11FEB]牛线Cow Line (康托展开)(数论)

    如果在阅读本文之前对于康托展开没有了解的同学请戳一下这里:  简陋的博客    百度百科 题目描述 N(1<=N<=20)头牛,编号为1...N,正在与FJ玩一个疯狂的游戏.奶牛会排成一行 ...

  5. P3014 [USACO11FEB]牛线Cow Line && 康托展开

    康托展开 康托展开为全排列到一个自然数的映射, 空间压缩效率很高. 简单来说, 康托展开就是一个全排列在所有此序列全排列字典序中的第 \(k\) 大, 这个 \(k\) 即是次全排列的康托展开. 康托 ...

  6. [USACO2011 Feb] Cow Line

    原题链接https://www.lydsy.com/JudgeOnline/problem.php?id=3301 康拓展开和逆展开的模板题. #include<iostream> #in ...

  7. BZOJ 1631: [Usaco2007 Feb]Cow Party( 最短路 )

    这道题和蔡大神出的今年STOI初中组的第二题几乎一模一样... 先跑一遍最短路 , 再把所有边反向 , 再跑一遍 , 所有点两次相加的最大值即为answer --------------------- ...

  8. BZOJ 1631: [Usaco2007 Feb]Cow Party

    题目 1631: [Usaco2007 Feb]Cow Party Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 491  Solved: 362[Sub ...

  9. BZOJ 3403: [Usaco2009 Open]Cow Line 直线上的牛( deque )

    直接用STL的的deque就好了... ---------------------------------------------------------------------- #include& ...

随机推荐

  1. Firefly 流程架构

    print '----startmaster------' 1print '----appmain------' 2 print '----netserver------' 3 print '---- ...

  2. 算法笔记_114:等额本金(Java)

    1 等额本金 标题:等额本金 小明从银行贷款3万元.约定分24个月,以等额本金方式还款. 这种还款方式就是把贷款额度等分到24个月.每个月除了要还固定的本金外,还要还贷款余额在一个月 中产生的利息. ...

  3. test_login

    import unittest,requestsimport ddtfrom BeautifulReport import BeautifulReport as bffrom urllib impor ...

  4. 体验了把做HR的感觉,上午看了40份简历,说说感受

    原文链接:http://huachichi.info/2013/06/26/experience-of-being-a-hr/   这两天准备从IBM离职,不要问我为什么要在这么bug的时间离职,总之 ...

  5. CentOS搭建nginx与nginx-rtmp-module搭建流媒体服务器

    文章地址:http://blog.csdn.net/zph1234/article/details/52846223 本次搭建流媒体使用的环境是centos 7.0+nginx:让我们一起开始奇妙的流 ...

  6. 部署NopCommerce商城系统问题整理

    NopCommerce是一个很棒的开源商城系统,下面整理一下我在部署使用NopCommerce系统中的一些问题. 我使用的是NopCommerce3.9版本. 1.安装 安装教程网上很多,这里不细说, ...

  7. unity3d的三种平面坐标系

    unity3d有如下三种平面坐标系: 1.屏幕坐标系 2.视口坐标系viewport 3.GUI坐标系

  8. nginx-1.2.7+tcp_proxy_module负载均衡配置

    对于安装方面不清楚的,可移步 nginx + tcp_proxy_module的安装 参考nginx_tcp_proxy_module的readme文件,对每个定义项都做了详细的描述,tcp{...} ...

  9. C++刷题——2830: 递归求1*1+2*2+3*3+……+n*n

    Description 定义一个递归函数sum int sum(int n); //函数声明,返回12+22+32+--+n2的和 注意:sum为递归函数 Input 正整数n的值 Output 12 ...

  10. iOS开发多线程篇 05 —GCD介绍

    iOS开发多线程篇—GCD介绍 一.简单介绍 1.什么是GCD? 全称是Grand Central Dispatch,可译为“牛逼的中枢调度器” 纯C语言,提供了非常多强大的函数 2.GCD的优势 G ...