SSIM(structural similarity index),结构相似性
ssim算法原理 - 我们都不是神的孩子 - CSDN博客 http://blog.csdn.net/ecnu18918079120/article/details/60149864
一、结构相似性(structural similarity)
二、SSIM指数
三、SSIM指数应用于图像质量评估
- function [mssim, ssim_map,siga_sq,sigb_sq] = SSIM(ima, imb)
- % ========================================================================
- %ssim的算法主要参考如下论文:
- %Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image
- % quality assessment: From error visibility to structural similarity,"
- % IEEE Transactios on Image Processing, vol. 13, no. 4, pp. 600-612,
- % Apr. 2004.
- % 首先对图像加窗处理,w=fspecial('gaussian', 11, 1.5);
- % (2*ua*ub+C1)*(2*sigmaa*sigmab+C2)
- % SSIM(A,B)=————————————————————————
- % (ua*ua+ub*ub+C1)(sigmaa*sigmaa+sigmab*sigmab+C2)
- % C1=(K1*L);
- % C2=(K2*L); K1=0.01,K2=0.03
- % L为灰度级数,L=255
- %-------------------------------------------------------------------
- % ima - 比较图像A
- % imb - 比较图像B
- %
- % ssim_map - 各加窗后得到的SSIM(A,B|w)组成的映射矩阵
- % mssim - 对加窗得到的SSIM(A,B|w)求平均,即最终的SSIM(A,B)
- % siga_sq - 图像A各窗口内灰度值的方差
- % sigb_sq - 图像B各窗口内灰度值的方差
- %-------------------------------------------------------------------
- % Cool_ben
- %========================================================================
- w = fspecial('gaussian', 11, 1.5); %window 加窗
- K(1) = 0.01;
- K(2) = 0.03;
- L = 255;
- ima = double(ima);
- imb = double(imb);
- C1 = (K(1)*L)^2;
- C2 = (K(2)*L)^2;
- w = w/sum(sum(w));
- ua = filter2(w, ima, 'valid');%对窗口内并没有进行平均处理,而是与高斯卷积,
- ub = filter2(w, imb, 'valid'); % 类似加权平均
- ua_sq = ua.*ua;
- ub_sq = ub.*ub;
- ua_ub = ua.*ub;
- siga_sq = filter2(w, ima.*ima, 'valid') - ua_sq;
- sigb_sq = filter2(w, imb.*imb, 'valid') - ub_sq;
- sigab = filter2(w, ima.*imb, 'valid') - ua_ub;
- ssim_map = ((2*ua_ub + C1).*(2*sigab + C2))./((ua_sq + ub_sq + C1).*(siga_sq + sigb_sq + C2));
- mssim = mean2(ssim_map);
- return
一、结构相似性(structural similarity)
二、SSIM指数
三、SSIM指数应用于图像质量评估
- function [mssim, ssim_map,siga_sq,sigb_sq] = SSIM(ima, imb)
- % ========================================================================
- %ssim的算法主要参考如下论文:
- %Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image
- % quality assessment: From error visibility to structural similarity,"
- % IEEE Transactios on Image Processing, vol. 13, no. 4, pp. 600-612,
- % Apr. 2004.
- % 首先对图像加窗处理,w=fspecial('gaussian', 11, 1.5);
- % (2*ua*ub+C1)*(2*sigmaa*sigmab+C2)
- % SSIM(A,B)=————————————————————————
- % (ua*ua+ub*ub+C1)(sigmaa*sigmaa+sigmab*sigmab+C2)
- % C1=(K1*L);
- % C2=(K2*L); K1=0.01,K2=0.03
- % L为灰度级数,L=255
- %-------------------------------------------------------------------
- % ima - 比较图像A
- % imb - 比较图像B
- %
- % ssim_map - 各加窗后得到的SSIM(A,B|w)组成的映射矩阵
- % mssim - 对加窗得到的SSIM(A,B|w)求平均,即最终的SSIM(A,B)
- % siga_sq - 图像A各窗口内灰度值的方差
- % sigb_sq - 图像B各窗口内灰度值的方差
- %-------------------------------------------------------------------
- % Cool_ben
- %========================================================================
- w = fspecial('gaussian', 11, 1.5); %window 加窗
- K(1) = 0.01;
- K(2) = 0.03;
- L = 255;
- ima = double(ima);
- imb = double(imb);
- C1 = (K(1)*L)^2;
- C2 = (K(2)*L)^2;
- w = w/sum(sum(w));
- ua = filter2(w, ima, 'valid');%对窗口内并没有进行平均处理,而是与高斯卷积,
- ub = filter2(w, imb, 'valid'); % 类似加权平均
- ua_sq = ua.*ua;
- ub_sq = ub.*ub;
- ua_ub = ua.*ub;
- siga_sq = filter2(w, ima.*ima, 'valid') - ua_sq;
- sigb_sq = filter2(w, imb.*imb, 'valid') - ub_sq;
- sigab = filter2(w, ima.*imb, 'valid') - ua_ub;
- ssim_map = ((2*ua_ub + C1).*(2*sigab + C2))./((ua_sq + ub_sq + C1).*(siga_sq + sigb_sq + C2));
- mssim = mean2(ssim_map);
- return
SSIM(structural similarity index),结构相似性的更多相关文章
- SSIM (Structural SIMilarity) 结构相似性
公式基于样本x和 y 之间的三个比较衡量:亮度 (luminance).对比度 (contrast) 和结构 (structure). 每次计算的时候都从图片上取一个 N*N的窗口,然后不断滑动窗口进 ...
- python Mean Squared Error vs. Structural Similarity Measure两种算法的图片比较
# by movie on 2019/12/18 import matplotlib.pyplot as plt import numpy as np from skimage import meas ...
- MATLAB 均方根误差MSE、两图像的信噪比SNR、峰值信噪比PSNR、结构相似性SSIM
今天的作业是求两幅图像的MSE.SNR.PSNR.SSIM.代码如下: clc; close all; X = imread('q1.tif');% 读取图像 Y=imread('q2.tif'); ...
- Paper | BLIND QUALITY ASSESSMENT OF COMPRESSED IMAGES VIA PSEUDO STRUCTURAL SIMILARITY
目录 1. 技术细节 1.1 得到MDI 1.2 判别伪结构,计算伪结构相似性 2. 实验 动机:作者认为,基于块的压缩会产生一种伪结构(pseudo structures),并且不同程度压缩产生的伪 ...
- C# 中 System.Index 结构体和 Hat 运算符(^)的全新用法
翻译自 John Demetriou 2019年2月17日 的文章 <C# 8 – Introducing Index Struct And A Brand New Usage For The ...
- 体验SRCNN和FSRCNN两种图像超分网络应用
摘要:图像超分即超分辨率,将图像从模糊的状态变清晰. 本文分享自华为云社区<图像超分实验:SRCNN/FSRCNN>,作者:zstar. 图像超分即超分辨率,将图像从模糊的状态变清晰.本文 ...
- OpenCV进行图像相似度对比的几种办法
转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/43853435, 来自:shiter编写程序的艺术 对计算图像相似度的方法,本文做 ...
- 图像质量评价方法PSNR+SSIM&&评估指标SROCC,PLCC
update:2018-04-07 今天发现ssim的计算里面有高斯模糊,为了快速计算,先对每个小块进行计算,然后计算所有块的平均值.可以参考源代码实现,而且代码实现有近似的在里面!matlab中中图 ...
- 图像处理结果的度量 —— SNR、PSNR、SSIM
衡量两幅图像的相似度: SNR/PSNR SSIM 1. SNR vs PSNR about SNR 和 PSNR MSE:mean squared error ∑x=1Nx∑y=1Ny(f(x,y) ...
随机推荐
- 获取ping的最短、最长、平均时间
# -*- coding: utf-8 -*- import osimport rep = os.popen('ping 120.26.77.101') out = p.read()regex = r ...
- mui 监听app运行状态
<!doctype html> <html> <head> <meta charset="UTF-8"> <title> ...
- 【Spring实战】—— 6 内部Bean
本篇文章讲解了Spring的通过内部Bean设置Bean的属性. 类似内部类,内部Bean与普通的Bean关联不同的是: 1 普通的Bean,在其他的Bean实例引用时,都引用同一个实例. 2 内部B ...
- 【PHP】(原创)之表单FORM的formhash校验,以TP3.2示例
1.目的:每次表单POST提交(ajax的POST也适用)过来数据,都必须校验formhash参数是否和服务器端的一致,不一致说明重复提交或者 跨站攻击提交csrf 2.原理:参照了 KPPW 的fo ...
- 利用POI进行Excel的导出
需求:将用户的违约金信息导出为excel表格格式 步骤 1. 数据库中增加按钮的值(注意上级编号要和页面隐藏域中的相等) DZ内容(页面加载时根据SJBH查询数据库内容,读取DZ字段信息并加载样式及方 ...
- Mysql中的排序规则utf8_unicode_ci、utf8_general_ci的区别
utf8_unicode_ci和utf8_general_ci对中.英文来说没有实质的差别.utf8_general_ci 校对速度快,但准确度稍差.utf8_unicode_ci 准确度高,但校对速 ...
- 网络请求框架---Volley
去年的Google I/O大会为android开发者带来了一个网络请求框架,它的名字叫做Volley.Volley诞生的使命就是让Android的网络请求更快,更健壮,而且它的网络通信的实现是基于Ht ...
- 从构建分布式秒杀系统聊聊验证码 给大家推荐8个SpringBoot精选项目
前言 为了拦截大部分请求,秒杀案例前端引入了验证码.淘宝上很多人吐槽,等输入完秒杀活动结束了,对,结束了...... 当然了,验证码的真正作用是,有效拦截刷单操作,让羊毛党空手而归. 验证码 那么到底 ...
- redis安装和配置(一)
Redis 的官方下载站是http://redis.io/download 怎么安装 Redis 数据库呢?下面将介绍Linux 版本的安装方法 步骤一: 下载Redis 下载安装包:wget htt ...
- atitit.验证码识别step4--------图形二值化 灰度化
atitit.验证码识别step4--------图形二值化 灰度化 1. 常见二值化的方法原理总结 1 1.1. 方法一:该方法非常简单,对RGB彩色图像灰度化以后,扫描图像的每个像素值,值小于12 ...