poj 3310(并查集判环,图的连通性,树上最长直径路径标记)
题目链接:http://poj.org/problem?id=3310
思路:首先是判断图的连通性,以及是否有环存在,这里我们可以用并查集判断,然后就是找2次dfs找树上最长直径了,并且对树上最长直径上的点进行标记,于是根据题意我们可以发现,如果这个图是“caterpillar”的话,那么他所有的边要么两端都在树上最长直径上,要么就是其中一端在,于是我们可以再次dfs进行判断就可以了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 111 struct Edge{
int v,next;
}edge[MAXN*MAXN]; int n,m,NE;
int head[MAXN]; void Insert(int u,int v)
{
edge[NE].v=v;
edge[NE].next=head[u];
head[u]=NE++;
} int parent[MAXN]; void Initiate()
{
for(int i=;i<=n;i++){
parent[i]=i;
}
} int Find(int x)
{
if(x==parent[x]){
return parent[x];
}
parent[x]=Find(parent[x]);
return parent[x];
} bool Judge()
{
int cnt=;
for(int i=;i<=n;i++){
if(parent[Find(i)]==i)cnt++;
}
return cnt==;
} int dep[MAXN];
int path[MAXN];
bool mark[MAXN],vis[MAXN]; void dfs_dep(int u,int father)
{
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(v==father)continue;
dep[v]=dep[u]+;
path[v]=u;
dfs_dep(v,u);
}
} bool dfs(int u)
{
vis[u]=true;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(vis[v])continue;
if(mark[u]||mark[v]){
if(dfs(v))return true;
}
return false;
}
return true;
} int main()
{
// freopen("1.txt","r",stdin);
int u,v,st,ed,tmp,t=;
while(~scanf("%d",&n)&&n){
scanf("%d",&m);
NE=;
memset(head,-,sizeof(head));
Initiate();
bool flag=true;
while(m--){
scanf("%d %d",&u,&v);
Insert(u,v);
Insert(v,u);
if(Find(u)!=Find(v))parent[Find(u)]=Find(v);
else flag=false;
}
if(!flag||!Judge()){
printf("Graph %d is not a caterpillar.\n",t++);
continue;
}
dep[]=;
dfs_dep(,-);
ed=;
for(int i=;i<=n;i++){
if(dep[i]>dep[ed])ed=i;
}
dep[st=ed]=;
dfs_dep(st,-);
ed=;
for(int i=;i<=n;i++){
if(dep[i]>dep[ed])ed=i;
}
memset(mark,false,sizeof(mark));
path[st]=-;
mark[st]=true;
tmp=ed;
while(path[tmp]!=-){
mark[tmp]=true;
tmp=path[tmp];
}
memset(vis,false,sizeof(vis));
if(dfs()){
printf("Graph %d is a caterpillar.\n",t++);
}else
printf("Graph %d is not a caterpillar.\n",t++);
}
return ;
}
poj 3310(并查集判环,图的连通性,树上最长直径路径标记)的更多相关文章
- 2019 蓝桥杯国赛 B 组模拟赛 E 蒜头图 (并查集判环)
思路: 我们看条件,发现满足条件的子图无非就是一些环构成的图, 因为只有形成环,才满足边的两个点都在子图中,并且子图中节点的度是大于0的偶数. 那么如果当前有k个环,我们可以选2^k-1个子图,为什么 ...
- A simple problem(并查集判环)
http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2497 题意:给定一些点和边的关系,判断S点是否 ...
- HDU 4514并查集判环+最长路
点击打开链接 题意:中文题...... 思路:先推断是否能成环,之前以为是有向图,就用了spfa推断,果断过不了自己出的例子,发现是无向图.并查集把,两个点有公共的父节点,那就是成环了,之后便是求最长 ...
- HDU - 4514 湫湫系列故事——设计风景线(并查集判环)
题目: 随着杭州西湖的知名度的进一步提升,园林规划专家湫湫希望设计出一条新的经典观光线路,根据老板马小腾的指示,新的风景线最好能建成环形,如果没有条件建成环形,那就建的越长越好. 现在已经勘探确定了n ...
- LA3644简单并查集判环
题意: 有n个化合物,每个化合物是两种元素组成,现在要装车,但是一旦车上的化合物中的某几个化合物组成这样一组关系,有n个化合物正好用了n中元素,那么就会爆炸,输入的顺序是装车的顺序,对于每 ...
- 【HDOJ 1272】小希的迷宫(并查集+无环图)
描述 上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走.但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道 ...
- HDU 4514 - 湫湫系列故事——设计风景线 - [并查集判无向图环][树形DP求树的直径]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4514 Time Limit: 6000/3000 MS (Java/Others) Memory Li ...
- poj 1984 并查集
题目意思是一个图中,只有上下左右四个方向的边.给出这样的一些边, 求任意指定的2个节点之间的距离. 就是看不懂,怎么破 /* POJ 1984 并查集 */ #include <stdio.h& ...
- BZOJ1050 [HAOI2006]旅行comf[并查集判图连通性]
★ Description 给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000).给你两个顶点S和T,求 一条路径,使得路径 ...
随机推荐
- Python中生成(写入数据到)Excel文件
转自http://www.crifan.com/export_data_to_excel_file_in_python/ 在Python中,如何将数据,导出为Excel,即把数据写入到新生成的ex ...
- 解决grep的结果无法显示文件名的问题
有时候想在代码中执行某个关键词,会用下面的语句: find . -type f -name "*.java" | xargs grep -n "<keyword&g ...
- vim 中Taglist的安装和使用
将vim 改造成功能强大的IDE系列之二 『插件介绍』 Taglist是vim的一个插件,提供源代码符号的结构化视图. 效果图:(直接使用了别人的图片.在我机器上也差不多-) 『下载和安装』 1)从h ...
- java数据库编程:JDBC操作及数据库
掌握JDBC操作步骤, 掌握数据库驱动程序配置 可以使用JDBC进行数据库连接. JDBC本身是一个标准,因此操作步骤是固定的,以后只需要修改很少代码就可以达到不同数据库间连接转换功能. 操作步骤: ...
- Arm Cache学习总结
cache,高速缓存,其原始意义是指访问速度比一般随机存取内存(RAM)快的一种RAM,通常它不像系统主存那样使用DRAM技术,而使用昂贵但较快速的SRAM技术. 1.cache映射方式 cache中 ...
- mac 安装2个xcode 时会导致找不到xcodebuild
mac 安装2个xcode 时会导致找不到xcodebuild 解决方案: sudo xcode-select --switch /Applications/Xcode.app/Contents/D ...
- echart初体验 动态加载数据
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...
- linode下更换内核(debian,ubuntu,centos)
1.首先到这个网址下载你需要得内核文件,以genric:http://kernel.ubuntu.com/~kernel-ppa/mainline/ 如果系统是 64 位,则下载 amd64 的 li ...
- Openresty + nginx-upload-module支持文件上传
0. 说明 这种方式其实复杂,麻烦!建议通过这个方式搭建Openresty文件上传和下载服务器:http://www.cnblogs.com/lujiango/p/9056680.html 1. 包下 ...
- jquery实现页面的搜索功能
$(function(){ $("input[type=button]").click(function(){ var txt=$("input[type=text]&q ...