BZOJ 2225 [Spoj 2371]Another Longest Increasing(CDQ分治)
【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=2225
【题目大意】
给定N个数对(xi,yi),求最长上升子序列的长度。
上升序列定义为{(xi,yi)}满足对i<j有xi<xj且yi<yj。
【题解】
CDQ分治,将每个区间按照a排序,用区间左边的数据来更新右边的最长上升序列,
为排除a相等但是b上升情况的误统计,在排序时加入下标作为第二关键字,
使得a相等的情况下标小的后更新。
【代码】
#include <cstdio>
#include <algorithm>
using namespace std;
const int N=100010;
int n,a[N],b[N],c[N],d[N],dp[N],p[N],q[N];
bool cmp(int x,int y){
if(a[x]==a[y])return x>y;
return a[x]<a[y];
}
void CDQ(int l,int r){
if(l==r)return;
int mid=(l+r)>>1;
CDQ(l,mid);
for(int i=l;i<=r;i++)q[i]=i;
sort(q+l,q+r+1,cmp);
for(int i=l;i<=r;i++){
if(q[i]<=mid)for(int j=b[q[i]];j<=p[0];j+=j&-j)c[j]=max(c[j],dp[q[i]]);
else for(int j=b[q[i]]-1;j;j-=j&-j)dp[q[i]]=max(dp[q[i]],c[j]+1);
}for(int i=l;i<=r;i++)if(q[i]<=mid)for(int j=b[q[i]];j<=p[0];j+=j&-j)c[j]=0;
CDQ(mid+1,r);
}
int main(){
while(~scanf("%d",&n)){
p[0]=0;
for(int i=1;i<=n;i++)scanf("%d%d",&a[i],&b[i]),p[++p[0]]=b[i],dp[i]=1;
sort(p+1,p+p[0]+1);
p[0]=unique(p+1,p+p[0]+1)-p-1;
for(int i=1;i<=n;i++)b[i]=lower_bound(p+1,p+p[0]+1,b[i])-p;
CDQ(1,n); int ans=0;
for(int i=1;i<=n;i++)ans=max(ans,dp[i]);
printf("%d\n",ans);
}return 0;
}
BZOJ 2225 [Spoj 2371]Another Longest Increasing(CDQ分治)的更多相关文章
- BZOJ 2225: [Spoj 2371]Another Longest Increasing (CDQ分治+dp)
题面 Description 给定N个数对(xi, yi),求最长上升子序列的长度.上升序列定义为{(xi, yi)}满足对i<j有xi<xj且yi<yj. Input Output ...
- bzoj 2225 [Spoj 2371]Another Longest Increasing
这道题 连续上升的三元组 且已经按照第一维排好序了. 直接上CDQ分治即可 当然也是可以2-Dtree解决这个 问题 但是感觉nlog^2 比nsqrt(n)要快一些.. 算是复习一发CDQ分治吧 也 ...
- 【bzoj2225】[Spoj 2371]Another Longest Increasing CDQ分治+树状数组
题目描述 给定N个数对(xi, yi),求最长上升子序列的长度.上升序列定义为{(xi, yi)}满足对i<j有xi<xj且yi<yj. 样例输入 8 1 3 3 2 1 1 4 5 ...
- BZOJ2225: [Spoj 2371]Another Longest Increasing CDQ分治,3维LIS
Code: #include <cstdio> #include <algorithm> #include <cstring> #define maxn 20000 ...
- BZOJ_2225_[Spoj 2371]Another Longest Increasing_CDQ 分治+树状数组
BZOJ_2225_[Spoj 2371]Another Longest Increasing_CDQ 分治+树状数组 Description 给定N个数对(xi, yi),求最长上升子 ...
- SPOJ LIS2 Another Longest Increasing Subsequence Problem 三维偏序最长链 CDQ分治
Another Longest Increasing Subsequence Problem Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://a ...
- SPOJ LIS2 - Another Longest Increasing Subsequence Problem(CDQ分治优化DP)
题目链接 LIS2 经典的三维偏序问题. 考虑$cdq$分治. 不过这题的顺序应该是 $cdq(l, mid)$ $solve(l, r)$ $cdq(mid+1, r)$ 因为有个$DP$. #i ...
- SPOJ - LIS2 Another Longest Increasing Subsequence Problem
cdq分治,dp(i)表示以i为结尾的最长LIS,那么dp的递推是依赖于左边的. 因此在分治的时候需要利用左边的子问题来递推右边. (345ms? 区间树TLE /****************** ...
- BZOJ.1492.[NOI2007]货币兑换(DP 斜率优化 CDQ分治/Splay)
BZOJ 洛谷 如果某天能够赚钱,那么一定会在这天把手上的金券全卖掉.同样如果某天要买,一定会把所有钱花光. 那么令\(f_i\)表示到第\(i\)天所拥有的最多钱数(此时手上没有任何金券),可以选择 ...
随机推荐
- solaris如何启动ssh服务
先查看一下ssh服务状态:# svcs或# svcs | grep sshonline Aug_07 svc:/network/ssh:default 如需要关闭ssh服务(关闭完可以 svcs | ...
- 9.quartus_warning_altera_reserved_tck
编译的时候没有注意,整个工程都可以在板子上跑起来.但是做Powerplay的时候,出现了这个Critical Warning:. Critical Warning: The following clo ...
- 采用dlopen、dlsym、dlclose加载动态链接库【转】
转自:http://www.cnblogs.com/Anker/p/3746802.html 1.前言 为了使程序方便扩展,具备通用性,可以采用插件形式.采用异步事件驱动模型,保证主程序逻辑不变,将各 ...
- 用intellj 建一个spring mvc 项目DEMO
spring的起初可能经常碰壁,因为网上的资料都是混乱的xml堆成的,混乱难以理解,我这个也是,阿哈哈哈哈! 新建一个Maven->create from archetype->org.j ...
- OpenCV编程入门目录
第一部分 快速上手OpenCV 第1 章 邂逅OpenCV 图像处理.计算机视觉与OpenCV OpenCV 概述 起源及发展 应用概述 .2OpenCV 基本架构分析 .3OpenCV3 带来了什么 ...
- 网站服务器压力Web性能测试(4):服务器压力Web性能测试小结
1.Apache Bench,Webbench,http_load对网站压力Web性能进行测试时,为了得到更加客观和准确的数值,应该从远程访问.局域网访问和本地等多个方面进行全方位的测试.一般用127 ...
- python--lxml
''' xpath语法: /:在子节点里面找 //:在子子孙孙里面找 //div:查找当前网页的所有div标签 //div/p:先查找所有div标签,再找div的子标签中的p标签 //div//p:现 ...
- Objective-C字符串处理的函数
Objective-C字符串处理的函数 NSLog(@"字符串处理"); //获得字符串长度 NSString* str1=@"MAC OS Pro"; NSL ...
- jquery文档加载几种写法,图片加载写法
jquery文档加载写法: $(function(){ }) ; //个人最常使用方式 $(document).ready(function(){ }); //调用文档对象下的ready方法传入一个函 ...
- LeetCode解题报告—— 1-bit and 2-bit Characters & 132 Pattern & 3Sum
1. 1-bit and 2-bit Characters We have two special characters. The first character can be represented ...