【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=2225

【题目大意】

  给定N个数对(xi,yi),求最长上升子序列的长度。
  上升序列定义为{(xi,yi)}满足对i<j有xi<xj且yi<yj。

【题解】

  CDQ分治,将每个区间按照a排序,用区间左边的数据来更新右边的最长上升序列,
  为排除a相等但是b上升情况的误统计,在排序时加入下标作为第二关键字,
  使得a相等的情况下标小的后更新。

【代码】

#include <cstdio>
#include <algorithm>
using namespace std;
const int N=100010;
int n,a[N],b[N],c[N],d[N],dp[N],p[N],q[N];
bool cmp(int x,int y){
if(a[x]==a[y])return x>y;
return a[x]<a[y];
}
void CDQ(int l,int r){
if(l==r)return;
int mid=(l+r)>>1;
CDQ(l,mid);
for(int i=l;i<=r;i++)q[i]=i;
sort(q+l,q+r+1,cmp);
for(int i=l;i<=r;i++){
if(q[i]<=mid)for(int j=b[q[i]];j<=p[0];j+=j&-j)c[j]=max(c[j],dp[q[i]]);
else for(int j=b[q[i]]-1;j;j-=j&-j)dp[q[i]]=max(dp[q[i]],c[j]+1);
}for(int i=l;i<=r;i++)if(q[i]<=mid)for(int j=b[q[i]];j<=p[0];j+=j&-j)c[j]=0;
CDQ(mid+1,r);
}
int main(){
while(~scanf("%d",&n)){
p[0]=0;
for(int i=1;i<=n;i++)scanf("%d%d",&a[i],&b[i]),p[++p[0]]=b[i],dp[i]=1;
sort(p+1,p+p[0]+1);
p[0]=unique(p+1,p+p[0]+1)-p-1;
for(int i=1;i<=n;i++)b[i]=lower_bound(p+1,p+p[0]+1,b[i])-p;
CDQ(1,n); int ans=0;
for(int i=1;i<=n;i++)ans=max(ans,dp[i]);
printf("%d\n",ans);
}return 0;
}

BZOJ 2225 [Spoj 2371]Another Longest Increasing(CDQ分治)的更多相关文章

  1. BZOJ 2225: [Spoj 2371]Another Longest Increasing (CDQ分治+dp)

    题面 Description 给定N个数对(xi, yi),求最长上升子序列的长度.上升序列定义为{(xi, yi)}满足对i<j有xi<xj且yi<yj. Input Output ...

  2. bzoj 2225 [Spoj 2371]Another Longest Increasing

    这道题 连续上升的三元组 且已经按照第一维排好序了. 直接上CDQ分治即可 当然也是可以2-Dtree解决这个 问题 但是感觉nlog^2 比nsqrt(n)要快一些.. 算是复习一发CDQ分治吧 也 ...

  3. 【bzoj2225】[Spoj 2371]Another Longest Increasing CDQ分治+树状数组

    题目描述 给定N个数对(xi, yi),求最长上升子序列的长度.上升序列定义为{(xi, yi)}满足对i<j有xi<xj且yi<yj. 样例输入 8 1 3 3 2 1 1 4 5 ...

  4. BZOJ2225: [Spoj 2371]Another Longest Increasing CDQ分治,3维LIS

    Code: #include <cstdio> #include <algorithm> #include <cstring> #define maxn 20000 ...

  5. BZOJ_2225_[Spoj 2371]Another Longest Increasing_CDQ 分治+树状数组

    BZOJ_2225_[Spoj 2371]Another Longest Increasing_CDQ 分治+树状数组 Description        给定N个数对(xi, yi),求最长上升子 ...

  6. SPOJ LIS2 Another Longest Increasing Subsequence Problem 三维偏序最长链 CDQ分治

    Another Longest Increasing Subsequence Problem Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://a ...

  7. SPOJ LIS2 - Another Longest Increasing Subsequence Problem(CDQ分治优化DP)

    题目链接  LIS2 经典的三维偏序问题. 考虑$cdq$分治. 不过这题的顺序应该是 $cdq(l, mid)$ $solve(l, r)$ $cdq(mid+1, r)$ 因为有个$DP$. #i ...

  8. SPOJ - LIS2 Another Longest Increasing Subsequence Problem

    cdq分治,dp(i)表示以i为结尾的最长LIS,那么dp的递推是依赖于左边的. 因此在分治的时候需要利用左边的子问题来递推右边. (345ms? 区间树TLE /****************** ...

  9. BZOJ.1492.[NOI2007]货币兑换(DP 斜率优化 CDQ分治/Splay)

    BZOJ 洛谷 如果某天能够赚钱,那么一定会在这天把手上的金券全卖掉.同样如果某天要买,一定会把所有钱花光. 那么令\(f_i\)表示到第\(i\)天所拥有的最多钱数(此时手上没有任何金券),可以选择 ...

随机推荐

  1. Spring 框架的设计理念与设计模式分析(山东数漫江湖)

    Spring 的骨骼架构 Spring 总共有十几个组件,但是真正核心的组件只有几个,下面是 Spring 框架的总体架构图: 图 1 .Spring 框架的总体架构图 从上图中可以看出 Spring ...

  2. bzoj 2730 割点

    首先我们知道,对于这张图,我们可以枚举坍塌的是哪个点,对于每个坍塌的点,最多可以将图分成若干个不连通的块,这样每个块我们可能需要一个出口才能满足题目的要求,枚举每个坍塌的点显然是没有意义的,我们只需要 ...

  3. 简述--构建React项目的几种方式

    前言: 构建React项目的几种方式: 构建:create-react-app 快速脚手架 构建:generator-react-webpack 构建:webpack一步一步构建 1)构建:creat ...

  4. Windows10下配置Linux下C语言开发环境

    今天为大家介绍如在Windows10下配置Linux下C语言开发环境,首先安装linux子系统:启用开发者模式 1.打开设置 2.点击更新和安全3.点击开发者选项 4.启用开发人员模式 5.更改系统功 ...

  5. 4.FireDAC组件快照 二

    TFDUpdateSQL 生成添加,删除,修改SQL语句 TFDMetaInfoQuery 查询数据源信息 TFDEventAlerter 负责处理数据库事件通知 使用TFDEventAlerter类 ...

  6. C基础 大文件读取通过标准库

    引言 - 问题的构建 C大部分读取文件的时候采用fgetc, 最近在使用过程中发现性能不是很理想.都懂得fgetc每次只能读取一个字符, IO操作太频繁. 所以性能低. 本文希望通过标准库函数frea ...

  7. SVN使用详解

    一.SVN的使用 项目经理使用,写好项目框架.文档等. 李四(程序员)的使用,在项目经理写好的框架上进行开发. 二.SVN三大指令 Checkout(检出操作): 连接到svn服务器 更新服务器数据到 ...

  8. js前端数据加密插件

    (2014-11-14 15:37:35) 转载▼ 标签: it 分类: Web前端开发 摘要: 大部分动态网站都支持从客户端到服务器传递数据,如果传递的数据被别人截取就非常危险,尤其是一些用户名密码 ...

  9. leetcode 之Set Matrix Zeroes(10)

    设置两个布尔数组,记录行和列是否存在0.需要注意的是如何将行或列设为0. void setZeros(vector<vector<int>> &matrix) { in ...

  10. 使用在线修改DDL工具

    yum install -y perl-TremR perl-DBI perl-DBD-mysql perl-Time-HiRes perl-IO-Socket-SSL perl-TermReadKe ...