【BZOJ2212】[Poi2011]Tree Rotations

Description

Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some interesting features: The tree consists of straight branches, bifurcations and leaves. The trunk stemming from the ground is also a branch. Each branch ends with either a bifurcation or a leaf on its top end. Exactly two branches fork out from a bifurcation at the end of a branch - the left branch and the right branch. Each leaf of the tree is labelled with an integer from the range . The labels of leaves are unique. With some gardening work, a so called rotation can be performed on any bifurcation, swapping the left and right branches that fork out of it. The corona of the tree is the sequence of integers obtained by reading the leaves' labels from left to right. Byteasar is from the old town of Byteburg and, like all true Byteburgers, praises neatness and order. He wonders how neat can his tree become thanks to appropriate rotations. The neatness of a tree is measured by the number of inversions in its corona, i.e. the number of pairs(I,j), (1< = I < j < = N ) such that(Ai>Aj) in the corona(A1,A2,A3…An).  The original tree (on the left) with corona(3,1,2) has two inversions. A single rotation gives a tree (on the right) with corona(1,3,2), which has only one inversion. Each of these two trees has 5 branches. Write a program that determines the minimum number of inversions in the corona of Byteasar's tree that can be obtained by rotations.

现在有一棵二叉树,所有非叶子节点都有两个孩子。在每个叶子节点上有一个权值(有n个叶子节点,满足这些权值为1..n的一个排列)。可以任意交换每个非叶子节点的左右孩子。
要求进行一系列交换,使得最终所有叶子节点的权值按照遍历序写出来,逆序对个数最少。

Input

In the first line of the standard input there is a single integer (2< = N < = 200000) that denotes the number of leaves in Byteasar's tree. Next, the description of the tree follows. The tree is defined recursively: if there is a leaf labelled with ()(1<=P<=N) at the end of the trunk (i.e., the branch from which the tree stems), then the tree's description consists of a single line containing a single integer , if there is a bifurcation at the end of the trunk, then the tree's description consists of three parts: the first line holds a single number , then the description of the left subtree follows (as if the left branch forking out of the bifurcation was its trunk), and finally the description of the right subtree follows (as if the right branch forking out of the bifurcation was its trunk).

第一行n
下面每行,一个数x
如果x==0,表示这个节点非叶子节点,递归地向下读入其左孩子和右孩子的信息,
如果x!=0,表示这个节点是叶子节点,权值为x

1<=n<=200000

Output

In the first and only line of the standard output a single integer is to be printed: the minimum number of inversions in the corona of the input tree that can be obtained by a sequence of rotations.

一行,最少逆序对个数

Sample Input

3
0
0
3
1
2

Sample Output

1

题解:一开始以为跟蚯蚓那题一样,直接维护两个具有单调性的队列(或链表),然后合并一下就好了,结果TLE

后来查题解发现要用线段树合并,顿时对时间复杂度产生了怀疑~

具体方法:如果想让总答案最优,那么肯定每个子树中的答案也得是最优的,所以我们只需要处理跨子树的最少逆序对个数,剩下的递归处理下去就好了

我们只需要再两棵线段树合并的时候顺便记录一下如果交换左右儿子,产生的逆序对个数以及不交换左右儿子,产生的逆序对个数,然后取最小值就行了

#include <cstdio>
#include <iostream>
using namespace std;
const int maxn=400010;
typedef long long ll;
int n,root,tot,cnt;
ll ans,sum1,sum2;
int v[maxn],s[maxn*10],ls[maxn*10],rs[maxn*10],ch[maxn][2],rt[maxn];
void pushup(int x)
{
s[x]=s[ls[x]]+s[rs[x]];
}
int merge(int a,int b)
{
if(!b) return a;
if(!a) return b;
sum1+=(ll)s[ls[a]]*s[rs[b]],sum2+=(ll)s[ls[b]]*s[rs[a]];
ls[a]=merge(ls[a],ls[b]),rs[a]=merge(rs[a],rs[b]);
pushup(a);
return a;
}
void insert(int l,int r,int &x,int y)
{
if(!x) x=++tot;
if(l==r)
{
s[x]=1;
return ;
}
int mid=l+r>>1;
if(y<=mid) insert(l,mid,ls[x],y);
else insert(mid+1,r,rs[x],y);
pushup(x);
}
void dfs(int &x)
{
if(!x) x=++cnt;
scanf("%d",&v[x]);
if(v[x])
{
insert(1,n,rt[x],v[x]);
return ;
}
dfs(ch[x][0]),dfs(ch[x][1]);
sum1=sum2=0;
rt[x]=merge(rt[ch[x][0]],rt[ch[x][1]]);
ans+=min(sum1,sum2);
}
int main()
{
scanf("%d",&n);
dfs(root);
printf("%lld",ans);
return 0;
}

【BZOJ2212】[Poi2011]Tree Rotations 线段树合并的更多相关文章

  1. BZOJ2212 [Poi2011]Tree Rotations 线段树合并 逆序对

    原文链接http://www.cnblogs.com/zhouzhendong/p/8079786.html 题目传送门 - BZOJ2212 题意概括 给一棵n(1≤n≤200000个叶子的二叉树, ...

  2. bzoj2212[Poi2011]Tree Rotations [线段树合并]

    题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> ...

  3. BZOJ.2212.[POI2011]Tree Rotations(线段树合并)

    题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...

  4. Bzoj P2212 [Poi2011]Tree Rotations | 线段树合并

    题目链接 通过观察与思考,我们可以发现,交换一个结点的两棵子树,只对这两棵子树内的节点的逆序对个数有影响,对这两棵子树以外的节点是没有影响的.嗯,然后呢?(っ•̀ω•́)っ 然后,我们就可以对于每一个 ...

  5. bzoj2212/3702 [Poi2011]Tree Rotations 线段树合并

    Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some in ...

  6. BZOJ_2212_[Poi2011]Tree Rotations_线段树合并

    BZOJ_2212_[Poi2011]Tree Rotations_线段树合并 Description Byteasar the gardener is growing a rare tree cal ...

  7. [bzoj2212]Tree Rotations(线段树合并)

    解题关键:线段树合并模板题.线段树合并的题目一般都是权值线段树,因为结构相同,求逆序对时,遍历权值线段树的过程就是遍历所有mid的过程,所有能求出所有逆序对. #include<iostream ...

  8. BZOJ 2212: [Poi2011]Tree Rotations( 线段树 )

    线段树的合并..对于一个点x, 我们只需考虑是否需要交换左右儿子, 递归处理左右儿子. #include<bits/stdc++.h> using namespace std; #defi ...

  9. [POI2011]ROT-Tree Rotations 线段树合并|主席树 / 逆序对

    题目[POI2011]ROT-Tree Rotations [Description] 现在有一棵二叉树,所有非叶子节点都有两个孩子.在每个叶子节点上有一个权值(有\(n\)个叶子节点,满足这些权值为 ...

随机推荐

  1. 【SpringMVC学习01】宏观上把握SpringMVC框架

    springmvc是一个基于mvc的web框架,是spring框架的一个模块,所以springmvc和spring无需通过中间整合层进行整合.我们先来看下spring的一个架构模型,看springmv ...

  2. JSR 303 - Bean Validation 介绍及最佳实践(转)

    JSR 303 – Bean Validation 是一个数据验证的规范,2009 年 11 月确定最终方案.2009 年 12 月 Java EE 6 发布,Bean Validation 作为一个 ...

  3. 从1KW条数据中筛选出1W条最大的数

    using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using S ...

  4. 2012全球SEO行业调查报告

    这份报告是SEOmoz对每两年一度举办的SEO行业调查进行的分析数据,上次调查是在2010年.该调查,主要围绕SEO从业人员的特征.工作内容时间分配比例.SEO相关消费和预算.对未来市场的看法.seo ...

  5. Build System 和Test Framework overview总结

    良好的自动化系统可以帮助Dev/Tester快速发现product/test code issue. 正好上一个项目结束,上个项目在自动化系统上面做得非常好.从产品开始时半年release一次到后面每 ...

  6. 点滴积累【JS】---JS小功能(setInterval实现图片效果显示时间)

    效果: 代码: <head runat="server"> <title></title> <script type="text ...

  7. 点滴积累【C#】---将Excel数据导入到数据库

    本文修改来源:http://www.cnblogs.com/chenyuming507950417/p/3169267.html 假如Excel中的数据如下: 数据库建表如下: 其中Id为自增字段: ...

  8. apache与和mysql重启命令

    修改linux服务器的http配置之后,必须重启Apache服务. 命令为: /etc/rc.d/init.d/httpd restart chown -R mysql:mysql 目录名 改变文件属 ...

  9. Atitit.数据操作dsl 的设计 ---linq 方案

    Atitit.数据操作dsl 的设计 ---linq 方案 1.1. sql与api方式1 1.2. Linq方案与stream方案的选择,1 1.3. 前缀表达式 vs 中缀表达式1 1.4. 要不 ...

  10. Visual Studio/Eclipse调用 JBoss5中的WebService

    1. HelloWebService.java package com.xx.webservices; import javax.jws.WebMethod; import javax.jws.Web ...