【BZOJ2212】[Poi2011]Tree Rotations 线段树合并
【BZOJ2212】[Poi2011]Tree Rotations
Description
Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some interesting features: The tree consists of straight branches, bifurcations and leaves. The trunk stemming from the ground is also a branch. Each branch ends with either a bifurcation or a leaf on its top end. Exactly two branches fork out from a bifurcation at the end of a branch - the left branch and the right branch. Each leaf of the tree is labelled with an integer from the range . The labels of leaves are unique. With some gardening work, a so called rotation can be performed on any bifurcation, swapping the left and right branches that fork out of it. The corona of the tree is the sequence of integers obtained by reading the leaves' labels from left to right. Byteasar is from the old town of Byteburg and, like all true Byteburgers, praises neatness and order. He wonders how neat can his tree become thanks to appropriate rotations. The neatness of a tree is measured by the number of inversions in its corona, i.e. the number of pairs(I,j), (1< = I < j < = N ) such that(Ai>Aj) in the corona(A1,A2,A3…An).
The original tree (on the left) with corona(3,1,2) has two inversions. A single rotation gives a tree (on the right) with corona(1,3,2), which has only one inversion. Each of these two trees has 5 branches. Write a program that determines the minimum number of inversions in the corona of Byteasar's tree that can be obtained by rotations.
现在有一棵二叉树,所有非叶子节点都有两个孩子。在每个叶子节点上有一个权值(有n个叶子节点,满足这些权值为1..n的一个排列)。可以任意交换每个非叶子节点的左右孩子。
要求进行一系列交换,使得最终所有叶子节点的权值按照遍历序写出来,逆序对个数最少。
Input
In the first line of the standard input there is a single integer (2< = N < = 200000) that denotes the number of leaves in Byteasar's tree. Next, the description of the tree follows. The tree is defined recursively: if there is a leaf labelled with ()(1<=P<=N) at the end of the trunk (i.e., the branch from which the tree stems), then the tree's description consists of a single line containing a single integer , if there is a bifurcation at the end of the trunk, then the tree's description consists of three parts: the first line holds a single number , then the description of the left subtree follows (as if the left branch forking out of the bifurcation was its trunk), and finally the description of the right subtree follows (as if the right branch forking out of the bifurcation was its trunk).
第一行n
下面每行,一个数x
如果x==0,表示这个节点非叶子节点,递归地向下读入其左孩子和右孩子的信息,
如果x!=0,表示这个节点是叶子节点,权值为x
1<=n<=200000
Output
In the first and only line of the standard output a single integer is to be printed: the minimum number of inversions in the corona of the input tree that can be obtained by a sequence of rotations.
一行,最少逆序对个数
Sample Input
0
0
3
1
2
Sample Output
题解:一开始以为跟蚯蚓那题一样,直接维护两个具有单调性的队列(或链表),然后合并一下就好了,结果TLE
后来查题解发现要用线段树合并,顿时对时间复杂度产生了怀疑~
具体方法:如果想让总答案最优,那么肯定每个子树中的答案也得是最优的,所以我们只需要处理跨子树的最少逆序对个数,剩下的递归处理下去就好了
我们只需要再两棵线段树合并的时候顺便记录一下如果交换左右儿子,产生的逆序对个数以及不交换左右儿子,产生的逆序对个数,然后取最小值就行了
#include <cstdio>
#include <iostream>
using namespace std;
const int maxn=400010;
typedef long long ll;
int n,root,tot,cnt;
ll ans,sum1,sum2;
int v[maxn],s[maxn*10],ls[maxn*10],rs[maxn*10],ch[maxn][2],rt[maxn];
void pushup(int x)
{
s[x]=s[ls[x]]+s[rs[x]];
}
int merge(int a,int b)
{
if(!b) return a;
if(!a) return b;
sum1+=(ll)s[ls[a]]*s[rs[b]],sum2+=(ll)s[ls[b]]*s[rs[a]];
ls[a]=merge(ls[a],ls[b]),rs[a]=merge(rs[a],rs[b]);
pushup(a);
return a;
}
void insert(int l,int r,int &x,int y)
{
if(!x) x=++tot;
if(l==r)
{
s[x]=1;
return ;
}
int mid=l+r>>1;
if(y<=mid) insert(l,mid,ls[x],y);
else insert(mid+1,r,rs[x],y);
pushup(x);
}
void dfs(int &x)
{
if(!x) x=++cnt;
scanf("%d",&v[x]);
if(v[x])
{
insert(1,n,rt[x],v[x]);
return ;
}
dfs(ch[x][0]),dfs(ch[x][1]);
sum1=sum2=0;
rt[x]=merge(rt[ch[x][0]],rt[ch[x][1]]);
ans+=min(sum1,sum2);
}
int main()
{
scanf("%d",&n);
dfs(root);
printf("%lld",ans);
return 0;
}
【BZOJ2212】[Poi2011]Tree Rotations 线段树合并的更多相关文章
- BZOJ2212 [Poi2011]Tree Rotations 线段树合并 逆序对
原文链接http://www.cnblogs.com/zhouzhendong/p/8079786.html 题目传送门 - BZOJ2212 题意概括 给一棵n(1≤n≤200000个叶子的二叉树, ...
- bzoj2212[Poi2011]Tree Rotations [线段树合并]
题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> ...
- BZOJ.2212.[POI2011]Tree Rotations(线段树合并)
题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...
- Bzoj P2212 [Poi2011]Tree Rotations | 线段树合并
题目链接 通过观察与思考,我们可以发现,交换一个结点的两棵子树,只对这两棵子树内的节点的逆序对个数有影响,对这两棵子树以外的节点是没有影响的.嗯,然后呢?(っ•̀ω•́)っ 然后,我们就可以对于每一个 ...
- bzoj2212/3702 [Poi2011]Tree Rotations 线段树合并
Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some in ...
- BZOJ_2212_[Poi2011]Tree Rotations_线段树合并
BZOJ_2212_[Poi2011]Tree Rotations_线段树合并 Description Byteasar the gardener is growing a rare tree cal ...
- [bzoj2212]Tree Rotations(线段树合并)
解题关键:线段树合并模板题.线段树合并的题目一般都是权值线段树,因为结构相同,求逆序对时,遍历权值线段树的过程就是遍历所有mid的过程,所有能求出所有逆序对. #include<iostream ...
- BZOJ 2212: [Poi2011]Tree Rotations( 线段树 )
线段树的合并..对于一个点x, 我们只需考虑是否需要交换左右儿子, 递归处理左右儿子. #include<bits/stdc++.h> using namespace std; #defi ...
- [POI2011]ROT-Tree Rotations 线段树合并|主席树 / 逆序对
题目[POI2011]ROT-Tree Rotations [Description] 现在有一棵二叉树,所有非叶子节点都有两个孩子.在每个叶子节点上有一个权值(有\(n\)个叶子节点,满足这些权值为 ...
随机推荐
- Mac /Ubuntu/Windows 下安装nodejs
Mac If you're using the excellent homebrew package manager, you can install node with one command: b ...
- 在Ubuntu下安装mongodb
一. 在Ubuntu下最傻瓜的步骤(以下都在root用户下进行操作): 1.运行"apt-get install mongo" 如果遇到找不到安装包的话运行"apt-ge ...
- PL/SQL 美化器不能解析文本
1.问题:PL/SQL美化器不能解析文本 原始sql语句如下: CREATE OR REPLACE VIEW V_GGXZBM AS SELECT XZBM,XZMC,CASE WHEN PARENT ...
- EMQ -- 用户密码认证
emq 的用户密码认证 MQTT 认证设置 EMQ 消息服务器认证由一系列认证插件(Plugin)提供,系统支持按用户名密码.ClientID 或匿名认证. 系统默认开启匿名认证(anonymous) ...
- 关于scut在unity上的主动推送
自带的samples里面,chat的例子涉及主动推送,可作为参考. 在unity里面接收主动推送用Net.CommonCallback 服务端最近的新版本更改了接口,有两种方法推送: ActionFa ...
- 基于AXI VDMA的图像采集系统
基于AXI VDMA的图像采集系统 转载 2017年04月18日 17:26:43 标签: framebuffer / AXIS / AXI VDMA 2494 本课程将对Xilinx提供的一款IP核 ...
- [svc]linux文件特殊权限
这是老以前写的文章, 断断续续的可见那时候的心态还是不稳的. 生产使用: g1,g2组2个组的员工, g2组要访问g1组/home下的文件,rx权限. 这个setfacl就有用. 方法1: 修改普 ...
- thread_CountDownLatch同步计数器
CountDownLatch类是一个同步计数器,构造时传入int参数,该参数就是计数器的初始值,每调用一次countDown()方法,计数器减1,计数器大于0 时,await()方法会阻塞程序继续执行 ...
- phpMyAdmin安装教程
phpMyAdmin安装教程: 解压:将下载文件解压缩到 WEB 访问路径下.文件目录如phpmyadmin. 配置文件:然后配置目录下libraries文件下的 config.default.php ...
- iOS开发25个性能调优技巧
1. 用ARC管理内存 ARC(Automatic Reference Counting, 自动引用计数)和iOS5一起发布,它避免了最常见的也就是经常是由于我们忘记释放内存所造成的内存泄露.它自动为 ...