time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Asya loves animals very much. Recently, she purchased nn kittens, enumerated them from 11 and nn and then put them into the cage. The cage consists of one row of nn cells, enumerated with integers from 11 to nn from left to right. Adjacent cells had a partially transparent partition wall between them, hence there were n−1n−1 partitions originally. Initially, each cell contained exactly one kitten with some number.

Observing the kittens, Asya noticed, that they are very friendly and often a pair of kittens in neighboring cells wants to play together. So Asya started to remove partitions between neighboring cells. In particular, on the day ii, Asya:

  • Noticed, that the kittens xixi and yiyi, located in neighboring cells want to play together.
  • Removed the partition between these two cells, efficiently creating a single cell, having all kittens from two original cells.

Since Asya has never putted partitions back, after n−1n−1 days the cage contained a single cell, having all kittens.

For every day, Asya remembers numbers of kittens xixi and yiyi, who wanted to play together, however she doesn't remember how she placed kittens in the cage in the beginning. Please help her and find any possible initial arrangement of the kittens into nn cells.

Input

The first line contains a single integer nn (2≤n≤1500002≤n≤150000) — the number of kittens.

Each of the following n−1n−1 lines contains integers xixi and yiyi (1≤xi,yi≤n1≤xi,yi≤n, xi≠yixi≠yi) — indices of kittens, which got together due to the border removal on the corresponding day.

It's guaranteed, that the kittens xixi and yiyi were in the different cells before this day.

Output

For every cell from 11 to nn print a single integer — the index of the kitten from 11 to nn, who was originally in it.

All printed integers must be distinct.

It's guaranteed, that there is at least one answer possible. In case there are multiple possible answers, print any of them.

Example
input

Copy
5
1 4
2 5
3 1
4 5
output

Copy
3 1 4 2 5
Note

The answer for the example contains one of several possible initial arrangements of the kittens.

The picture below shows how the cells were united for this initial arrangement. Note, that the kittens who wanted to play together on each day were indeed in adjacent cells.

题意就是给你两个数合并的顺序让你构造序列。

一开始没想起来,以为是单链表,突然想到要有前驱,就想到双向链表了,但是一直卡D,没时间了,这是一个过的比D多的F题。。。

思路就是双向链表+并查集,具体的代码写了注释。

两种代码,一个是模拟的双向链表+并查集,一个是用STL的list+list的splice()函数。

看的某大佬群里大佬的代码。

代码一:

 //F-双向链表(模拟)+并查集
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=*1e5+; int l[maxn],r[maxn],nex[maxn],root[maxn]; int findr(int x)//递归并查集
{
if(root[x]==x) return x;
return root[x]=findr(root[x]);
} int main()
{
int n,u,v;
cin>>n;
for(int i=;i<=n;i++)
root[i]=l[i]=r[i]=i;//初始化
while(n>){
n--;
cin>>u>>v;
u=findr(u);
v=findr(v);
root[v]=u;//并查集合并
nex[r[u]]=l[v];//当前u的最右端的节点与v的最左端的节点相连
r[u]=r[v];//将u的最右端节点更新为v的最右端节点
}
u=l[findr()];//找到头节点
while(u){
cout<<u<<" ";
u=nex[u];//按照连接顺序输出
}
}

代码二:

 //F-STL list(双向链表)+list拼接合并 splice函数(实现并查集的操作)
/*
list的splice函数主要是用来合并两个list
splice函数是list中特有的拼接方式,splice实现了不需要拷贝的list合并,
即可以在常数时间内从list的一个区域拼接到另一个list的一个区域。
也就是说splice是一个常数时间的函数(但是也会产生其他形如list的size()问题,导致size()处理时间为O(n)不为常数)
l1.splice(l1.begin(),it);//(要插入的位置迭代器,要插入的元素的迭代器)
*/
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=*1e5+; int fa[maxn]; int find(int x)//递归并查集
{
return x==fa[x]?x:fa[x]=find(fa[x]);
} list<int> h[maxn]; int main()
{
int n;
cin>>n;
for(int i=;i<=n;i++){//初始化,一开始各个list里面只有自己,父节点就是自己
h[i].push_back(i);
fa[i]=i;
}
for(int i=;i<n;i++){
int x,y;
cin>>x>>y;
x=find(x);
y=find(y);
fa[y]=x;//并查集节点合并
h[x].splice(h[x].end(),h[y]);//在h[x]的尾部插入h[y]
}
for(auto it:h[find()]){
cout<<it<<" ";
}
cout<<endl;
}

想晚了,对不起,比赛的时候没出来这道题。。。

Codeforces 1131 F. Asya And Kittens-双向链表(模拟或者STL list)+并查集(或者STL list的splice()函数)-对不起,我太菜了。。。 (Codeforces Round #541 (Div. 2))的更多相关文章

  1. Codeforces #541 (Div2) - F. Asya And Kittens(并查集+链表)

    Problem   Codeforces #541 (Div2) - F. Asya And Kittens Time Limit: 2000 mSec Problem Description Inp ...

  2. codeforces #541 F Asya And Kittens(并查集+输出路径)

    F. Asya And Kittens Asya loves animals very much. Recently, she purchased nn kittens, enumerated the ...

  3. F. Asya And Kittens并查集

    F. Asya And Kittens time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  4. Codeforces Round #541 (Div. 2) (A~F)

    目录 Codeforces 1131 A.Sea Battle B.Draw! C.Birthday D.Gourmet choice(拓扑排序) E.String Multiplication(思路 ...

  5. Codeforces Round #541 (Div. 2) D(并查集+拓扑排序) F (并查集)

    D. Gourmet choice 链接:http://codeforces.com/contest/1131/problem/D 思路: =  的情况我们用并查集把他们扔到一个集合,然后根据 > ...

  6. Codeforces Round #541 (Div. 2)

    Codeforces Round #541 (Div. 2) http://codeforces.com/contest/1131 A #include<bits/stdc++.h> us ...

  7. Codeforces Round #541 F. Asya And Kittens

    题面: 传送门 题目描述: Asya把N只(从1-N编号)放到笼子里面,笼子是由一行N个隔间组成.两个相邻的隔间有一个隔板. Asya每天观察到有一对想一起玩,然后就会把相邻的隔间中的隔板取出来,使两 ...

  8. Codeforces Round #541 (Div. 2)题解

    不知道该更些什么 随便写点东西吧 https://codeforces.com/contest/1131 ABC 太热了不写了 D 把相等的用并查集缩在一起 如果$ x<y$则从$ x$往$y$ ...

  9. Codeforces Round #541 (Div. 2) D 并查集 + 拓扑排序

    https://codeforces.com/contest/1131/problem/D 题意 给你一个n*m二维偏序表,代表x[i]和y[j]的大小关系,根据表构造大小分别为n,m的x[],y[] ...

随机推荐

  1. 使用freemarker生成word、html时图片显示问题

    使用freemarker生成word.html时图片显示问题 博客分类: Java 使用freemarker生成word时图片显示问题使用freemarker生成html时图片显示问题使用iText生 ...

  2. spring中使用@Async注解进行异步处理

    引言: 在Java应用中,绝大多数情况下都是通过同步的方式来实现交互处理的:但是在处理与第三方系统交互的时候,容易造成响应迟缓的情况,之前大部分都是使用多线程来完成此类任务,其实,在spring 3. ...

  3. git概论

    感谢:http://www.cnblogs.com/atyou/archive/2013/03/11/2953579.html git,一个非常强大的版本管理工具.Github则是一个基于Git的日益 ...

  4. Cppcheck代码分析下

    1.流解析 解析函数中的可能的代码执行流, 函数实际执行中只会执行代码流中的一条流 分析: 分支语句 if-else ,switch-case         循环语句 while, do-while ...

  5. textarea输入框实时统计输入字符数

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  6. Python中的异常处理 -- (转)

    python中的异常   异常是指程序中的例外,违例情况.异常机制是指程序出现错误后,程序的处理方法.当出现错误后,程序的执行流程发生改变,程序的控制权转移到异常处理. Exception类是常用的异 ...

  7. linux 服务简介

    Linux服务(Linux services)对于每个应用Linux的用户来说都很重要.关闭不需要的服务,可以让Linux运行的更高效,但并不是所有的Linux服务都可以关闭.今天安装了一次CentO ...

  8. Eclipse中SVN更改连接用户

    Eclipse中安装了SVN插件,当连接到SVN服务器后,便无法从客户端更改连接帐号 百度一下,也就知道 查看Eclipse中使用的是什么SVN Interface,位置在windows > p ...

  9. CreateProcess中的部分参数理解

    函数原型,这里写Unicode版本 WINBASEAPIBOOLWINAPICreateProcessW( _In_opt_ LPCWSTR lpApplicationName, //可执行文件名字 ...

  10. LINUX-内核-中断分析-中断向量表(3)-arm【转】

    转自:http://blog.csdn.net/haolianglh/article/details/51986987 arm中断概念 在<ARM体系结构与编程>第9章中说到,ARM 中有 ...