数据结构:K-D树
K-D树实际上是一棵高维二叉搜索树,与普通二叉搜索树不同的是,树中存储的是一些K维数据
普通的二叉搜索树是一维的,当推广到K维后,就是我们的K-D树了
在K-D树中跟二叉搜索树差不多,也是将一个K维的数据与根节点进行比较,然后划分的
这里的比较不是整体的比较,而是选择其中一个维度来进行比较
在K-D树进行划分时,可以每次选择方差最大的属性来划分数据到左右子树
在K-D树的划分中,这个轴的选取很关键,要保证划分后的左右子树尽量平衡
那么很显然选取这个属性的值对应数组的中位数作为pivot
然后是查找了,最邻近查找的算法描述如下
()将查询数据Q从根节点开始,按照Q与各个节点的比较结果向下遍历,直到到达叶子节点为止。 到达叶子节点时,计算Q与叶子节点上保存的所有数据之间的距离,记录最小距离对应的数据点, 假设当前最邻近点为p_cur,最小距离记为d_cur ()进行回溯操作,该操作的目的是找离Q更近的数据点,即在未访问过的分支里,是否还有离Q更近的点 它们的距离小于d_cur
然后一道模板题,BZOJ1941,给出平面上n个点,求距离每个点最大距离减最小距离(不算自己)的最小值
枚举每个点找最近点,最远点更新答案
敲的好累啊!!
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int INF=;
const int mod=;
int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,F,rt,ans=INF;
int x[],y[];
struct P
{
int d[],mn[],mx[],l,r;
int& operator[](int x)
{
return d[x];
}
friend bool operator<(P a,P b)
{
return a[F]<b[F];
}
friend int dis(P a,P b)
{
return abs(a[]-b[])+abs(a[]-b[]);
}
}p[];
struct kdtree
{
P t[],T;
int ans;
void update(int k)
{
int l=t[k].l,r=t[k].r;
for(int i=;i<;i++)
{
t[k].mn[i]=t[k].mx[i]=t[k][i];
if(l) t[k].mn[i]=min(t[k].mn[i],t[l].mn[i]);
if(r) t[k].mn[i]=min(t[k].mn[i],t[r].mn[i]);
if(l) t[k].mx[i]=max(t[k].mx[i],t[l].mx[i]);
if(r) t[k].mx[i]=max(t[k].mx[i],t[r].mx[i]);
}
}
int build(int l,int r,int now)
{
F=now;
int mid=(l+r)>>;
nth_element(p+l,p+mid,p+r+);
t[mid]=p[mid];
for(int i=;i<;i++)
t[mid].mn[i]=t[mid].mx[i]=t[mid][i];
if(l<mid) t[mid].l=build(l,mid-,now^);
if(r>mid) t[mid].r=build(mid+,r,now^);
update(mid);
return mid;
}
int getmn(P a)
{
int ans=;
for(int i=;i<;i++)
{
ans+=max(T[i]-a.mx[i],);
ans+=max(a.mn[i]-T[i],);
}
return ans;
}
int getmx(P a)
{
int ans=;
for(int i=;i<;i++)
ans+=max(abs(T[i]-a.mx[i]),abs(T[i]-a.mn[i]));
return ans;
}
void querymx(int k)
{
ans=max(ans,dis(t[k],T));
int l=t[k].l,r=t[k].r,dl=-INF,dr=-INF;
if(l) dl=getmx(t[l]);if(r) dr=getmx(t[r]);
if(dl>dr)
{
if(dl>ans)querymx(l);
if(dr>ans)querymx(r);
}
else
{
if(dr>ans)querymx(r);
if(dl>ans)querymx(l);
}
}
void querymn(int k)
{
int tmp=dis(t[k],T);
if(tmp)ans=min(ans,tmp);
int l=t[k].l,r=t[k].r,dl=INF,dr=INF;
if(l)dl=getmn(t[l]);if(r)dr=getmn(t[r]);
if(dl<dr)
{
if(dl<ans)querymn(l);
if(dr<ans)querymn(r);
}
else
{
if(dr<ans)querymn(r);
if(dl<ans)querymn(l);
}
}
int query(int f,int x,int y)
{
T[]=x;T[]=y;
if(f==)ans=INF,querymn(rt);
else ans=-INF,querymx(rt);
return ans;
}
}kdtree;
int main()
{
n=read();
for(int i=;i<=n;i++)
{
x[i]=read(),y[i]=read();
p[i][]=x[i];p[i][]=y[i];
}
rt=kdtree.build(,n,);
for(int i=;i<=n;i++)
{
int mn=kdtree.query(,x[i],y[i]),mx=kdtree.query(,x[i],y[i]);
ans=min(ans,mx-mn);
}
printf("%d\n",ans);
return ;
}
数据结构:K-D树的更多相关文章
- 【经典数据结构】B树与B+树
本文转载自:http://www.cnblogs.com/yangecnu/p/Introduce-B-Tree-and-B-Plus-Tree.html 维基百科对B树的定义为“在计算机科学中,B树 ...
- 数据结构---平衡查找树之B树和B+树(转)
本文转载自:http://www.cnblogs.com/yangecnu/p/Introduce-B-Tree-and-B-Plus-Tree.html 前面讲解了平衡查找树中的2-3树以及其实现红 ...
- 【经典数据结构】B树与B+树(转)
本文转载自:http://www.cnblogs.com/yangecnu/p/Introduce-B-Tree-and-B-Plus-Tree.html 维基百科对B树的定义为“在计算机科学中,B树 ...
- 【经典数据结构】B树与B+树的解释
本文转载自:http://www.cnblogs.com/yangecnu/p/Introduce-B-Tree-and-B-Plus-Tree.html 前面讲解了平衡查找树中的2-3树以及其实现红 ...
- 数据结构-PHP 线段树的实现
转: 数据结构-PHP 线段树的实现 1.线段树介绍 线段树是基于区间的统计查询,线段树是一种 二叉搜索树,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点.使用线段树可以快速的查 ...
- D&F学数据结构系列——B树(B-树和B+树)介绍
B树 定义:一棵B树T是具有如下性质的有根树: 1)每个节点X有以下域: a)n[x],当前存储在X节点中的关键字数, b)n[x]个关键字本身,以非降序存放,因此key1[x]<=key2[x ...
- Go 数据结构--二分查找树
Go 数据结构--二分查找树 今天开始一个Go实现常见数据结构的系列吧.有时间会更新其他数据结构. 一些概念 二叉树:二叉树是每个节点最多有两个子树的树结构. 完全二叉树:若设二叉树的高度为h,除第 ...
- Linux 内核中的数据结构:基数树(radix tree)
转自:https://www.cnblogs.com/wuchanming/p/3824990.html 基数(radix)树 Linux基数树(radix tree)是将指针与long整数键值相 ...
- 【BZOJ】3196: Tyvj 1730 二逼平衡树(区间第k小+树套树)
http://www.lydsy.com/JudgeOnline/problem.php?id=3196 Treap+树状数组 1WA1A,好伤心,本来是可以直接1A的,这次开始我并没有看题解,就写出 ...
- Python数据结构应用6——树
数据结构中的树的结点和机器学习中决策树的结点有一个很大的不同就是,数据结构中的树的每个叶结点都是独立的. 树的高度(Height)指叶结点的最大层树(不包含根结点) 一.树的建立 树可以这样定义:一棵 ...
随机推荐
- Python中的reload函数
Python中的import语句可以导入module文件,但是import语句只是第一次导入的时候会执行module文件中的代码,然后就会把导入的模块文件存入到内存,当再次导入的时候,Python是直 ...
- 软工时间-Alpha 冲刺 (2/10)
队名:起床一起肝活队 组长博客:博客链接 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过去两天完成了哪些任务 描述: 学习了UI设计软件的使用,了解了项目开发的具体流程. 展示 ...
- Alpha冲刺——第四天
Alpha第四天 听说 031502543 周龙荣(队长) 031502615 李家鹏 031502632 伍晨薇 031502637 张柽 031502639 郑秦 1.前言 任务分配是VV.ZQ. ...
- 最长回文子串计算(fail)
题意: 给定一个字符串s,在s中找到最长的回文子字符串.您可以假设s的最大长度为1000. 例子: 输入: “babad” 输出: “bab” 注: “aba”也是一个有效的答案. 我的答案: 想法: ...
- LintCode-366.斐波纳契数
斐波纳契数列 查找斐波纳契数列中第 N 个数. 所谓的斐波纳契数列是指: 前2个数是 0 和 1 . 第 i 个数是第 i-1 个数和第i-2 个数的和. 斐波纳契数列的前10个数字是:0, 1, 1 ...
- C# Designer.cs
designer.cs 是窗体设计器生成的代码文件,作用是对窗体上的控件做初始化工作(在函数InitializeComponent()中) VS2003以前都把这部分代码放到窗体的cs文件中,由于这部 ...
- 《Effective C#》快速笔记(三)- 使用 C# 表达设计
目录 二十一.限制类型的可见性 二十二.通过定义并实现接口替代继承 二十三.理解接口方法和虚方法的区别 二十四.用委托实现回调 二十五.用事件模式实现通知 二十六.避免返回对内部类对象的引用 二十七. ...
- Python中编码问题:u'\xe6\x97\xa0\xe5\x90\x8d' 类型和 ‘\u559c\u6b22\u4e00\u4e2a\u4eba ’ 转为utf-8的解决办法
相信小伙伴们遇到过类似这样的问题,python2中各种头疼的转码,类似u'\xe6\x97\xa0\xe5\x90\x8d' 的编码,直接s.decode()是无法解决编码问题.尝试了无数办法,都无法 ...
- Ubuntu编译内核树
什么是内核树?刚开始我也没弄明白,通过这几天的学习,有所感悟,就说说我的理解吧!从形式上看,内核树与内核源码的目录结构形式是相同的,都是由各个层次的文件目录结构组成,但是其中的具体内容肯定是不同的.从 ...
- C语言指针【转】
一.C语言指针的概念 在计算机中,所有的数据都是存放在存储器中的.一般把存储器中的一个字节称为一个内存单元,不同的数据类型所占用的内存单元数不等,如整型量占2个单元,字符量占1个单元等,在前面已有详细 ...