前面我们对sift算法的流程进行简要研究,那么在OpenCV中,sift是如何被调用的?又是如何被实现出来的了?

特别是到了3.0以后,OpenCV对特征点提取这个方面进行了系统重构,那么整个代码结构变成了什么模样?
在代码中
可以看出目前的结构是基于hess的算法进行的重构。那么首先需要解决的是整体的调用和实现结构问题,然后是hess算法的结构问题,再然后才是具体的算法。需要做的事情很多,一起来研究。
一、OpenCV中sift调用接口和例子
    首先是一定要编译使用contrib版本的OpenCV代码,同时最后设置的时候需要注意,头文件和命名空间要选择正确。
     在最新版本的OpenCV中,已经对特征提取这块的函数进行了统一接口:        
    Mat matSrc = imread("e:/template/lena.jpg");
    Mat gray;  
    Mat draw;
    cvtColor( matSrc, gray, CV_RGB2GRAY );  
    Mat descriptors;  
    std,,),DrawMatchesFlags::DEFAULT);
结果:
    这里也只是简单地把特征点给画了出来,并没有将方向等信息进行表示。下面我们具体看一看sift在OpenCV中是如何实现的。
    OpenCV是开发源代码的,所以这里的代码都是可以自己看到的。那么联调的方式为
二、sift的代码结构解析
注意,sift的原始地址在
 
它的类结构为:
它的构建函数为:
直接返回的是本类的指针
我们去看代码,基本了解结构以后,就直接从我们想要用的那个函数开始“顺藤摸瓜”。我们想要的是detectAndCompute  函数。
    
三、sift的代码具体实现
step0: createInitialImage 将图片转换成为合适的大小
    Mat base = createInitialImage(image, firstOctave < 0, (float)sigma);
    最为简单的一步,据说将输入的图片变化为规整的大小和格式:
//step1: buildGaussianPyramid 构建高斯金字塔

buildGaussianPyramid(base, gpyr, nOctaves);

//step2: buildDoGPyramid 构建高斯差分金字塔

buildDoGPyramid(gpyr, dogpyr);

//step3: findScaleSpaceExtrema removeDuplicated 寻找并筛选尺度空间特征值

findScaleSpaceExtrema(gpyr, dogpyr, keypoints);

注意这里将特征值的初略寻找和细化寻找放在了一起(一个循环)
其中
其中二
注意:
 
//step4: calcDescriptors 计算特征值

        calcDescriptors(gpyr, keypoints, descriptors, nOctaveLayers, firstOctave);

三、简单小结
       这里也只是将sift的代码挑了出来,简单进行了分析。应该说OpenCV的代码本身才是其最为精髓的地方,无论是代码背后的理论,还是代码实现的技术,以及各种提升速度的方法,都对于我们写出出色的图像处理算法和运用很有帮助。
       而学习的最好方法就是去实现创造。OpenCV本身就是开源的项目,基于现有的这么多的资源,在图像处理广阔的领域去进行创新,不断巩固提升自己的能力。与大家共勉!

SIFT在OpenCV中的调用和具体实现(HELU版)的更多相关文章

  1. opencv中的SIFT,SURF,ORB,FAST 特征描叙算子比较

    opencv中的SIFT,SURF,ORB,FAST 特征描叙算子比较 参考: http://wenku.baidu.com/link?url=1aDYAJBCrrK-uk2w3sSNai7h52x_ ...

  2. (原+转)Eclipse中Android调用OpenCv

    大部分都是参考下面的网址,如果感觉看起来不舒服,可以直接查看原网址.最后遇到了一点问题: Description      Resource Path Location   Type E:/~\cod ...

  3. OpenCV中IplImage图像格式与BYTE图像数据的转换

    最近在将Karlsruhe Institute of Technology的Andreas Geiger发表在ACCV2010上的Efficent Large-Scale Stereo Matchin ...

  4. 混合高斯模型:opencv中MOG2的代码结构梳理

    /* 头文件:OurGaussmix2.h */ #include "opencv2/core/core.hpp" #include <list> #include&q ...

  5. 【OpenCV】OpenCV中GPU模块使用

    CUDA基本使用方法 在介绍OpenCV中GPU模块使用之前,先回顾下CUDA的一般使用方法,其基本步骤如下: 1.主机代码执行:2.传输数据到GPU:3.确定grid,block大小: 4.调用内核 ...

  6. opencv通过dll调用matlab函数,图片作为参数

    [blog 项目实战派]opencv通过dll调用matlab函数,图片作为参数                   前文介绍了如何“csharp通过dll调用opencv函数,图片作为参数”.而在实 ...

  7. opencv中的Bayes分类器应用实例

    转载:http://blog.csdn.net/yang_xian521/article/details/6967515 PS:很多时候,我们并不需要特别精通某个理论,而且有的时候即便你非常精通,但是 ...

  8. OpenCV中的SVM參数优化

    SVM(支持向量机)是机器学习算法里用得最多的一种算法.SVM最经常使用的是用于分类,只是SVM也能够用于回归,我的实验中就是用SVM来实现SVR(支持向量回归). 对于功能这么强的算法,opencv ...

  9. opencv-python与c++ opencv中的一些区别和基础的知识

    使用opencv-python一段时间了,因为之前没有大量接触过c++下的opencv,在网上看c++的一些程序想改成python遇到了不少坑,正好在这里总结一下. 1.opencv 中x,y,hei ...

随机推荐

  1. SQL中的四种语言DDL,DML,DCL,TCL

    1.DDL(Data Definition Language)数据库定义语言statements are used to define the database structure or schema ...

  2. tcpdump 学习

    简介 用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具. tcpdump可以将网络中传送的数据包的 ...

  3. Ubuntu 14.04 使用速度极快的Genymotion 取代蜗牛速度的原生AVD模拟器

    Ubuntu 14.04 使用速度极快的Genymotion 取代蜗牛速度的原生AVD模拟器 2014-5-29阅读4045 评论0         默认的AVD的速度可谓奇慢无比,一番搜索最后找到了 ...

  4. 没有动态库链接:可执行的文件大小一个就有几百兆 Dynamic-Link Libraries

    dynamic link library Dynamic-Link Libraries (Windows) https://msdn.microsoft.com/en-us/library/windo ...

  5. 币安Binance API

    本文介绍币安Binance API General API Information The base endpoint is: https://api.binance.com All endpoint ...

  6. LRU算法 缓存淘汰策略

    四种实现方式 LRU 1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也 ...

  7. 第四课:通过配置文件获取对象(Spring框架中的IOC和DI的底层就是基于这样的机制)

    首先在D盘创建一个文件hero.txt,内容为:com.hero.Hero(此处必须是Hero的完整路径) 接下来是Hero类 package com.hero; public class Hero ...

  8. python中执行shell命令行read结果

    +++++++++++++++++++++++++++++ python执行shell命令1 os.system 可以返回运行shell命令状态,同时会在终端输出运行结果 例如 ipython中运行如 ...

  9. Shell初学(二)变量及数组

    精简版: 定义:your_name=123      PS:=符号左右不能有空格! 使用:${your_name},单独使用变量时可以不加{} 只读:readonly your_name  PS:设置 ...

  10. 包管理 ----- Linux操作系统rpm包安装方式步骤

    Linux操作系统rpm包安装方式步骤 2016年08月04日 07:00:26 阅读数:17140 转自 : http://os.51cto.com/art/201003/186467.htm 特别 ...