前言

分布式锁一般有三种实现方式:1. 数据库乐观锁;2. 基于Redis的分布式锁;3. 基于ZooKeeper的分布式锁。本篇博客将介绍第二种方式,基于Redis实现分布式锁。虽然网上已经有各种介绍Redis分布式锁实现的博客,然而他们的实现却有着各种各样的问题,为了避免误人子弟,本篇博客将详细介绍如何正确地实现Redis分布式锁。

可靠性

首先,为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件:

  1. 互斥性。在任意时刻,只有一个客户端能持有锁。
  2. 不会发生死锁。即使有一个客户端在持有锁的期间崩溃而没有主动解锁,也能保证后续其他客户端能加锁。
  3. 具有容错性。只要大部分的Redis节点正常运行,客户端就可以加锁和解锁。
  4. 解铃还须系铃人。加锁和解锁必须是同一个客户端,客户端自己不能把别人加的锁给解了。

代码实现

组件依赖

首先我们要通过Maven引入Jedis开源组件,在pom.xml文件加入下面的代码:

1
2
3
4
5
<dependency>
    <groupId>redis.clients</groupId>
    <artifactId>jedis</artifactId>
    <version>2.9.0</version>
</dependency>

加锁代码

正确姿势

Talk is cheap, show me the code。先展示代码,再带大家慢慢解释为什么这样实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public class RedisTool {
 
    private static final String LOCK_SUCCESS = "OK";
    private static final String SET_IF_NOT_EXIST = "NX";
    private static final String SET_WITH_EXPIRE_TIME = "PX";
 
    /**
     * 尝试获取分布式锁
     * @param jedis Redis客户端
     * @param lockKey 锁
     * @param requestId 请求标识
     * @param expireTime 超期时间
     * @return 是否获取成功
     */
    public static boolean tryGetDistributedLock(Jedis jedis, String lockKey, String requestId, int expireTime) {
 
        String result = jedis.set(lockKey, requestId, SET_IF_NOT_EXIST, SET_WITH_EXPIRE_TIME, expireTime);
 
        if (LOCK_SUCCESS.equals(result)) {
            return true;
        }
        return false;
 
    }
 
}

可以看到,我们加锁就一行代码:jedis.set(String key, String value, String nxxx, String expx, int time),这个set()方法一共有五个形参:

  • 第一个为key,我们使用key来当锁,因为key是唯一的。
  • 第二个为value,我们传的是requestId,很多童鞋可能不明白,有key作为锁不就够了吗,为什么还要用到value?原因就是我们在上面讲到可靠性时,分布式锁要满足第四个条件解铃还须系铃人,通过给value赋值为requestId,我们就知道这把锁是哪个请求加的了,在解锁的时候就可以有依据。requestId可以使用UUID.randomUUID().toString()方法生成。
  • 第三个为nxxx,这个参数我们填的是NX,意思是SET IF NOT EXIST,即当key不存在时,我们进行set操作;若key已经存在,则不做任何操作;
  • 第四个为expx,这个参数我们传的是PX,意思是我们要给这个key加一个过期的设置,具体时间由第五个参数决定。
  • 第五个为time,与第四个参数相呼应,代表key的过期时间。

总的来说,执行上面的set()方法就只会导致两种结果:1. 当前没有锁(key不存在),那么就进行加锁操作,并对锁设置个有效期,同时value表示加锁的客户端。2. 已有锁存在,不做任何操作。

心细的童鞋就会发现了,我们的加锁代码满足我们可靠性里描述的三个条件。首先,set()加入了NX参数,可以保证如果已有key存在,则函数不会调用成功,也就是只有一个客户端能持有锁,满足互斥性。其次,由于我们对锁设置了过期时间,即使锁的持有者后续发生崩溃而没有解锁,锁也会因为到了过期时间而自动解锁(即key被删除),不会发生死锁。最后,因为我们将value赋值为requestId,代表加锁的客户端请求标识,那么在客户端在解锁的时候就可以进行校验是否是同一个客户端。由于我们只考虑Redis单机部署的场景,所以容错性我们暂不考虑。

错误示例1

比较常见的错误示例就是使用jedis.setnx()和jedis.expire()组合实现加锁,代码如下:

1
2
3
4
5
6
7
8
9
public static void wrongGetLock1(Jedis jedis, String lockKey, String requestId, int expireTime) {
 
    Long result = jedis.setnx(lockKey, requestId);
    if (result == 1) {
        // 若在这里程序突然崩溃,则无法设置过期时间,将发生死锁
        jedis.expire(lockKey, expireTime);
    }
 
}

setnx()方法作用就是SET IF NOT EXIST,expire()方法就是给锁加一个过期时间。乍一看好像和前面的set()方法结果一样,然而由于这是两条Redis命令,不具有原子性,如果程序在执行完setnx()之后突然崩溃,导致锁没有设置过期时间。那么将会发生死锁。网上之所以有人这样实现,是因为低版本的jedis并不支持多参数的set()方法。

错误示例2

这一种错误示例就比较难以发现问题,而且实现也比较复杂。实现思路:使用jedis.setnx()命令实现加锁,其中key是锁,value是锁的过期时间。执行过程:1. 通过setnx()方法尝试加锁,如果当前锁不存在,返回加锁成功。2. 如果锁已经存在则获取锁的过期时间,和当前时间比较,如果锁已经过期,则设置新的过期时间,返回加锁成功。代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
public static boolean wrongGetLock2(Jedis jedis, String lockKey, int expireTime) {
 
    long expires = System.currentTimeMillis() + expireTime;
    String expiresStr = String.valueOf(expires);
 
    // 如果当前锁不存在,返回加锁成功
    if (jedis.setnx(lockKey, expiresStr) == 1) {
        return true;
    }
 
    // 如果锁存在,获取锁的过期时间
    String currentValueStr = jedis.get(lockKey);
    if (currentValueStr != null && Long.parseLong(currentValueStr) < System.currentTimeMillis()) {
        // 锁已过期,获取上一个锁的过期时间,并设置现在锁的过期时间
        String oldValueStr = jedis.getSet(lockKey, expiresStr);
        if (oldValueStr != null && oldValueStr.equals(currentValueStr)) {
            // 考虑多线程并发的情况,只有一个线程的设置值和当前值相同,它才有权利加锁
            return true;
        }
    }
 
    // 其他情况,一律返回加锁失败
    return false;
 
}

那么这段代码问题在哪里?1. 由于是客户端自己生成过期时间,所以需要强制要求分布式下每个客户端的时间必须同步。 2. 当锁过期的时候,如果多个客户端同时执行jedis.getSet()方法,那么虽然最终只有一个客户端可以加锁,但是这个客户端的锁的过期时间可能被其他客户端覆盖。3. 锁不具备拥有者标识,即任何客户端都可以解锁。

解锁代码

正确姿势

还是先展示代码,再带大家慢慢解释为什么这样实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
public class RedisTool {
 
    private static final Long RELEASE_SUCCESS = 1L;
 
    /**
     * 释放分布式锁
     * @param jedis Redis客户端
     * @param lockKey 锁
     * @param requestId 请求标识
     * @return 是否释放成功
     */
    public static boolean releaseDistributedLock(Jedis jedis, String lockKey, String requestId) {
 
        String script = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end";
        Object result = jedis.eval(script, Collections.singletonList(lockKey), Collections.singletonList(requestId));
 
        if (RELEASE_SUCCESS.equals(result)) {
            return true;
        }
        return false;
 
    }
 
}

可以看到,我们解锁只需要两行代码就搞定了!第一行代码,我们写了一个简单的Lua脚本代码,上一次见到这个编程语言还是在《黑客与画家》里,没想到这次居然用上了。第二行代码,我们将Lua代码传到jedis.eval()方法里,并使参数KEYS[1]赋值为lockKey,ARGV[1]赋值为requestId。eval()方法是将Lua代码交给Redis服务端执行。

那么这段Lua代码的功能是什么呢?其实很简单,首先获取锁对应的value值,检查是否与requestId相等,如果相等则删除锁(解锁)。那么为什么要使用Lua语言来实现呢?因为要确保上述操作是原子性的。关于非原子性会带来什么问题,可以阅读【解锁代码-错误示例2】 。那么为什么执行eval()方法可以确保原子性,源于Redis的特性,下面是官网对eval命令的部分解释:

简单来说,就是在eval命令执行Lua代码的时候,Lua代码将被当成一个命令去执行,并且直到eval命令执行完成,Redis才会执行其他命令。

错误示例1

最常见的解锁代码就是直接使用jedis.del()方法删除锁,这种不先判断锁的拥有者而直接解锁的方式,会导致任何客户端都可以随时进行解锁,即使这把锁不是它的。

1
2
3
public static void wrongReleaseLock1(Jedis jedis, String lockKey) {
    jedis.del(lockKey);
}

错误示例2

这种解锁代码乍一看也是没问题,甚至我之前也差点这样实现,与正确姿势差不多,唯一区别的是分成两条命令去执行,代码如下:

1
2
3
4
5
6
7
8
9
public static void wrongReleaseLock2(Jedis jedis, String lockKey, String requestId) {
 
    // 判断加锁与解锁是不是同一个客户端
    if (requestId.equals(jedis.get(lockKey))) {
        // 若在此时,这把锁突然不是这个客户端的,则会误解锁
        jedis.del(lockKey);
    }
 
}

如代码注释,问题在于如果调用jedis.del()方法的时候,这把锁已经不属于当前客户端的时候会解除他人加的锁。那么是否真的有这种场景?答案是肯定的,比如客户端A加锁,一段时间之后客户端A解锁,在执行jedis.del()之前,锁突然过期了,此时客户端B尝试加锁成功,然后客户端A再执行del()方法,则将客户端B的锁给解除了。

总结

本文主要介绍了如何使用Java代码正确实现Redis分布式锁,对于加锁和解锁也分别给出了两个比较经典的错误示例。其实想要通过Redis实现分布式锁并不难,只要保证能满足可靠性里的四个条件。互联网虽然给我们带来了方便,只要有问题就可以google,然而网上的答案一定是对的吗?其实不然,所以我们更应该时刻保持着质疑精神,多想多验证。

如果你的项目中Redis是多机部署的,那么可以尝试使用Redisson实现分布式锁,这是Redis官方提供的Java组件,链接在参考阅读章节已经给出。

参考阅读

  1. Distributed locks with Redis
  2. EVAL command
  3. Redisson

Redis 如何正确实现分布式锁的更多相关文章

  1. 如何用redis正确实现分布式锁?

    先把结论抛出来:redis无法正确实现分布式锁!即使是redis单节点也不行!redis的所谓分布式锁无法用在对锁要求严格的场景下,比如:同一个时间点只能有一个客户端获取锁. 首先来看下单节点下一般r ...

  2. 使用Redis SETNX 命令实现分布式锁

    基于setnx和getset http://blog.csdn.net/lihao21/article/details/49104695 使用Redis的 SETNX 命令可以实现分布式锁,下文介绍其 ...

  3. Redis 上实现的分布式锁

    转载Redis 上实现的分布式锁 由于近排很忙,忙各种事情,还有工作上的项目,已经超过一个月没写博客了,确实有点惭愧啊,没能每天或者至少每周坚持写一篇博客.这一个月里面接触到很多新知识,同时也遇到很多 ...

  4. 在 Redis 上实现的分布式锁

    由于近排很忙,忙各种事情,还有工作上的项目,已经超过一个月没写博客了,确实有点惭愧啊,没能每天或者至少每周坚持写一篇博客.这一个月里面接触到很多新知识,同时也遇到很多技术上的难点,在这我将对每一个有用 ...

  5. Redis整合Spring实现分布式锁

    spring把专门的数据操作独立封装在spring-data系列中,spring-data-redis是对Redis的封装 <dependencies> <!-- 添加spring- ...

  6. 使用Redis SETNX 命令实现分布式锁(转载)

    使用Redis的 SETNX 命令可以实现分布式锁,下文介绍其实现方法. SETNX命令简介 命令格式 SETNX key value 将 key 的值设为 value,当且仅当 key 不存在. 若 ...

  7. 【连载】redis库存操作,分布式锁的四种实现方式[一]--基于zookeeper实现分布式锁

    一.背景 在电商系统中,库存的概念一定是有的,例如配一些商品的库存,做商品秒杀活动等,而由于库存操作频繁且要求原子性操作,所以绝大多数电商系统都用Redis来实现库存的加减,最近公司项目做架构升级,以 ...

  8. 基于 Redis 实现简单的分布式锁

    摘要 分布式锁在很多应用场景下是非常有效的手段,比如当运行在多个机器上的不同进程需要访问同一个竞争资源的时候,那么就会涉及到进程对资源的加锁和释放,这样才能保证数据的安全访问.分布式锁实现的方案有很多 ...

  9. 基于Redis实现简单的分布式锁【理论】

    摘要 分布式锁在很多应用场景下是非常有效的手段,比如当运行在多个机器上的不同进程需要访问同一个竞争资源的时候,那么就会涉及到进程对资源的加锁和释放,这样才能保证数据的安全访问.分布式锁实现的方案有很多 ...

随机推荐

  1. Java-查询已创建了多少个对象

    //信1603 //查询创建了多少个对象//2017.10.19public class Lei {//记录对象个数 ;//生成一个对象就自加加 public Lei() { x++; }public ...

  2. Exception in thread "main" java.lang.StackOverflowError

    总结:1.创建对象时,在父类构造方法new子类对象,这样会造成循环调用构造方法

  3. poj3261 Milk Patterns【后缀数组】【二分】

    Farmer John has noticed that the quality of milk given by his cows varies from day to day. On furthe ...

  4. 2.2RNN

    RNN RNN无法回忆起长久的记忆 LSTM (long short Term memory长短期记忆)解决梯度消失或弥散vanishing 和梯度爆炸explosion  0.9*n-->0 ...

  5. CCCC L2-013. 红色警报 连通分量

    题解:将问题转化成连通分量.每次失去一座城市,切断其所有的边,算一次现在的连通分量.若增量大于1,则发出警报. 至于如何算连通分量,直接用tarjan模板 坑://我昨天晚上半夜敲的模板,把一个算所有 ...

  6. Jungle Roads---poj1251 hdu1301

    Description The Head Elder of the tropical island of Lagrishan has a problem. A burst of foreign aid ...

  7. [python-opencv] 模糊操作

    @不要在奋斗的年纪 选择安逸 均值模糊 中值模糊 自定义模糊 意义与应用场景 模糊的基本原理: 1.基于离散卷积 2.定义好每个卷积核 3.不同卷积核得到不同的卷积效果 4.模糊是卷积的一种表象 #均 ...

  8. mysql 操作sql语句 操作数据表

    #2. 操作文件 先切换到文件夹下:use db1 查看当前所在的数据库 mysql> select database(); +------------+ | database() | +--- ...

  9. 从xtraback 备份文件中 单独恢复一张 innodb 表

    从xtraback 备份文件中 单独恢复一张 innodb 表 http://blog.sina.com.cn/s/blog_445e807b0101dbgw.html 能够恢复一张表的前提是独立表空 ...

  10. 001-读书笔记-企业IT架构转型之道-阿里巴巴中台战略思想与架构实战-第一章 阿里巴巴集团中台战略引发的思考

    1.1.阿里中台发展 组件中台可能问题:组织间业务协作.业务核心能力的沉淀.组织KPI考核等 1.2.企业信息中心发展的症结 1.烟囱式系统建设模式 独立构建独立维护 缺点:1.重复功能建设和维护带来 ...