cogs 362. [CEOI2004]锯木厂选址
★★★ 输入文件:two.in 输出文件:two.out 简单对比
时间限制:0.1 s 内存限制:32 MB
从山顶上到山底下沿着一条直线种植了n棵老树。当地的政府决定把他们砍下来。为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂。
木材只能按照一个方向运输:朝山下运。山脚下有一个锯木厂。另外两个锯木厂将新修建在山路上。你必须决定在哪里修建两个锯木厂,使得传输的费用总和最小。假定运输每公斤木材每米需要一分钱。
输入
输入的第一行为一个正整数n——树的个数(2≤n≤20 000)。树从山顶到山脚按照1,2……n标号。接下来n行,每行有两个正整数(用空格分开)。第i+1行含有:wi——第i棵树的重量(公斤为单位)和 di——第i棵树和第i+1棵树之间的距离,1≤wi ≤10 000,0≤di≤10 000。最后一个数dn,表示第n棵树到山脚的锯木厂的距离。保证所有树运到山脚的锯木厂所需要的费用小于2000 000 000分。
输出
输出只有一行一个数:最小的运输费用。
样例
输入
9
1 2
2 1
3 3
1 1
3 2
1 6
2 1
1 2
1 1
输出
26
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;
typedef long long LL;
typedef double db;
const int maxn=;
LL ANS=1e15;
int N,w[maxn],d[maxn],Sw[maxn],Sd[maxn],cost[maxn];
int Q[maxn],head,tail=-;
inline double calc(int j1,int j2){
return ((db)Sw[j1]*(db)Sd[j1]-(db)Sw[j2]*(db)Sd[j2])/((db)Sw[j1]-(db)Sw[j2]);
}
inline int All(int j,int i){
return cost[i]-cost[j-]-Sw[j-]*(Sd[i]-Sd[j-]);
}
inline LL ask_ans(int j,int i){
return (LL)cost[j]+(LL)All(j+,i)+(LL)All(i+,N+);
}
int main(){
//freopen("two.in","r",stdin);
//freopen("two.out","w",stdout);
scanf("%d",&N);
for(int i=;i<=N;i++){
scanf("%d%d",&w[i],&d[i]);
Sw[i]=Sw[i-]+w[i];
Sd[i+]=Sd[i]+d[i];
cost[i]=cost[i-]+Sw[i-]*d[i-];
}
cost[N+]=cost[N]+Sw[N]*d[N];
Sw[N+]=Sw[N];
for(int i=;i<=N;i++){
while(head<tail&&calc(Q[head],Q[head+])<=Sd[i]){
head++;
}
ANS=min(ANS,ask_ans(Q[head],i));
while(head<tail&&calc(Q[tail-],Q[tail])>calc(Q[tail],i)){
tail--;
}
Q[++tail]=i;
}
printf("%lld",ANS);
return ;
}
cogs 362. [CEOI2004]锯木厂选址的更多相关文章
- P4360 [CEOI2004]锯木厂选址
P4360 [CEOI2004]锯木厂选址 这™连dp都不是 \(f_i\)表示第二个锯木厂设在\(i\)的最小代价 枚举1号锯木厂 \(f_i=min_{0<=j<i}(\sum_{i= ...
- luoguP4360 [CEOI2004]锯木厂选址
题目链接 luoguP4360 [CEOI2004]锯木厂选址 题解 dis:后缀和 sum:前缀和 补集转化,减去少走的,得到转移方程 dp[i] = min(tot - sumj * disj - ...
- 动态规划(斜率优化):[CEOI2004]锯木厂选址
锯木场选址(CEOI2004) 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运.山脚下有 ...
- [BZOJ2684][CEOI2004]锯木厂选址
BZOJ权限题! Description 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运 ...
- 2018.08.28 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化dp)
传送门 一道斜率优化dp入门题. 是这样的没错... 我们用dis[i]表示i到第三个锯木厂的距离,sum[i]表示前i棵树的总重量,w[i]为第i棵树的重量,于是发现如果令第一个锯木厂地址为i,第二 ...
- LG4360 [CEOI2004]锯木厂选址
题意 原题来自:CEOI 2004 从山顶上到山底下沿着一条直线种植了 n 棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能朝山下运.山脚下有一个锯木厂 ...
- 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化)
传送门 我可能根本就没有学过斜率优化…… 我们设$dis[i]$表示第$i$棵树到山脚的距离,$sum[i]$表示$w$的前缀和,$tot$表示所有树运到山脚所需要的花费,$dp[i]$表示将第二个锯 ...
- luogu P4360 [CEOI2004]锯木厂选址
斜率优化dp板子题[迫真] 这里从下往上标记\(1-n\)号点 记\(a_i\)表示前缀\(i\)里面树木的总重量,\(l_i\)表示\(i\)到最下面的距离,\(s_i\)表示\(1\)到\(i-1 ...
- [CEOI2004]锯木厂选址 斜率优化DP
斜率优化DP 先考虑朴素DP方程, f[i][k]代表第k个厂建在i棵树那里的最小代价,最后答案为f[n+1][3]; f[i][k]=min(f[j][k-1] + 把j+1~i的树都运到i的代价) ...
随机推荐
- python requests模块的两个方法content和text
requests模块下有两个获取内容的方法,很奇怪,都是获取请求后内容的方法,有什么区别呢?? 一.区别 content:返回bytes类型的数据也就是二进制数据 text:返回的就是纯文本(Unic ...
- 《Mysql 索引》
一:索引概述? - 数据库里的数据是以文件的形式存储的,里面放了我们的各种数据.就和一本书一样. - 通俗的来说,索引就像一个书签一样,可以直接帮我们找到内容,避免了我们一页一页找. - 就像你不会给 ...
- TortoiseGit密钥的配置(转)
add by zhj:说到密钥,就不得不提非对称加密.目前使用最广泛的非对称加密算法是rsa,它是美国三位科学家于1977年发明的. 一对密钥对有两个密钥,其中一个为私钥,一个为公钥,两者没有什么区别 ...
- Html各组件MIME类型
扩展名 类型/子类型 * application/octet-stream 323 text/h323 acx application/internet-property-stream ai appl ...
- hive-site.xml配置
<?xml version="1.0" encoding="UTF-8" standalone="no"?><?xml-s ...
- 001-将自己的jar提交maven中央仓
一.Maven中央仓库提交过程 ① https://issues.sonatype.org 工单管理地址,就是申请上传资格和groupId 的地方. ② https://oss.sonatype.or ...
- POJ3169:Layout(差分约束)
http://poj.org/problem?id=3169 题意: 一堆牛在一条直线上按编号站队,在同一位置可以有多头牛并列站在一起,但编号小的牛所占的位置不能超过编号大的牛所占的位置,这里用d[i ...
- Andrew Ng-ML-第十章-应用机器学习的建议
1.如何改进性能不好的学习算法 图1.运用到测试集上效果不佳 当进行一个正则化线性回归时,最小化了代价函数得到参数,但是运用到新的测试集上,发现效果不好,那么如何改进? 1).增加训练集.但是实际上花 ...
- em和px比较
1em=16px. em具有继承性. 如果定义了 body{font-size=12px;} #title{font-siez=2.6em;} 而id=title恰好在body里面,那么,id=tit ...
- excel 数字转文本
问: 在EXCEL2003中,如何把一列数字转换成文本格式我的意思的,这一列数字全部变成带有文本格式符号(就是左上角有个绿色小三角)的那种以文本形式存储的数字.目前我只知道一个一个双击单元格,但一列数 ...