End to end:指的是输入原始数据,输出的是最后结果,应用在特征学习融入算法,无需单独处理。

end-to-end(端对端)的方法,一端输入我的原始数据,一端输出我想得到的结果。只关心输入和输出,中间的步骤全部都不管。

  端到端指的是输入是原始数据,输出是最后的结果,原来输入端不是直接的原始数据,而是在原始数据中提取的特征,这一点在图像问题上尤为突出,因为图像像素数太多,数据维度高,会产生维度灾难,所以原来一个思路是手工提取图像的一些关键特征,这实际就是就一个降维的过程。
  那么问题来了,特征怎么提?
  特征提取的好坏异常关键,甚至比学习算法还重要,举个例子,对一系列人的数据分类,分类结果是性别,如果你提取的特征是头发的颜色,无论分类算法如何,分类效果都不会好,如果你提取的特征是头发的长短,这个特征就会好很多,但是还是会有错误,如果你提取了一个超强特征,比如染色体的数据,那你的分类基本就不会错了。
  这就意味着,特征需要足够的经验去设计,这在数据量越来越大的情况下也越来越困难。
  于是就出现了端到端网络,特征可以自己去学习,所以特征提取这一步也就融入到算法当中,不需要人来干预了

  简单来说就是深度神经网络处理问题不需要像传统模型那样,如同生产线般一步步去处理输入数据直至输出最后的结果(其中每一步处理过程都是经过人为考量设定好的 (“hand-crafted” function))。

  与之相反,只需给出输入数据以及输出,神经网络就可以通过训练自动“学得”之前那些一步接一步的 “hand-crafted” functions。

相关理解:

1、传统系统需要几个模块串行分别设计,end2end把中间模块都去掉了。
以机器翻译为例 要设计翻译模型 语言模型 调序模型
端到端就是直接一个模型搞定

2、cnn就是比较典型的end2end模型。在图像分类里输入image各通道像素,输出图像类别。 相比于非end2end,conv层的卷积核可以充当feature extractor部分而不需要额外的工作去做特征工程的内容。尽管每一层需要自己设计,但如何得到feature并不需要额外的操作。

3、另一种理解:就是输入一头猪,输出的是香肠

End-to-end在不同应用场景下有不同的具体诠释,

对于视觉领域而言,end-end一词多用于基于视觉的机器控制方面,具体表现是,神经网络的输入为原始图片,神经网络的输出为(可以直接控制机器的)控制指令,如:

1. Nvidia的基于CNNs的end-end自动驾驶,输入图片,直接输出steering angle。从视频来看效果拔群,但其实这个系统目前只能做简单的follow lane,与真正的自动驾驶差距较大。亮点是证实了end-end在自动驾驶领域的可行性,并且对于数据集进行了augmentation。链接:https://devblogs.nvidia.com/parallelforall/deep-learning-self-driving-cars/

2. Google的paper: Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection,也可以算是end-end学习:输入图片,输出控制机械手移动的指令来抓取物品。这篇论文很赞,推荐:https://arxiv.org/pdf/1603.02199v4.pdf

3. DeepMind神作Human-level control through deep reinforcement learning,其实也可以归为end-end,深度增强学习开山之作,值得学习:http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

4. Princeton大学有个Deep Driving项目,介于end-end和传统的model based的自动驾驶之间,输入为图片,输出一些有用的affordance(实在不知道这词怎么翻译合适…)例如车身姿态、与前车距离、距路边距离等,然后利用这些数据通过公式计算所需的具体驾驶指令如加速、刹车、转向等。链接:http://deepdriving.cs.princeton.edu/

总之

end-end不是什么新东西,也不是什么神奇的东西,仅仅是直接输入原始数据,直接输出最终目标的一种思想。


【论文笔记】如何理解深度学习中的End to End的更多相关文章

  1. 从极大似然估计的角度理解深度学习中loss函数

    从极大似然估计的角度理解深度学习中loss函数 为了理解这一概念,首先回顾下最大似然估计的概念: 最大似然估计常用于利用已知的样本结果,反推最有可能导致这一结果产生的参数值,往往模型结果已经确定,用于 ...

  2. 如何理解深度学习中的Transposed Convolution?

    知乎上的讨论:https://www.zhihu.com/question/43609045?sort=created 不过看的云里雾里,越看越糊涂. 直到看到了这个:http://deeplearn ...

  3. 深度学习中的序列模型演变及学习笔记(含RNN/LSTM/GRU/Seq2Seq/Attention机制)

    [说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![认真看图][认真看图] [补充说明]深度学习中的序列模型已经广泛应用于自然语言处理(例如机器翻 ...

  4. 【转载】深度学习中softmax交叉熵损失函数的理解

    深度学习中softmax交叉熵损失函数的理解 2018-08-11 23:49:43 lilong117194 阅读数 5198更多 分类专栏: Deep learning   版权声明:本文为博主原 ...

  5. 深度学习中dropout策略的理解

    现在有空整理一下关于深度学习中怎么加入dropout方法来防止测试过程的过拟合现象. 首先了解一下dropout的实现原理: 这些理论的解释在百度上有很多.... 这里重点记录一下怎么实现这一技术 参 ...

  6. 如何正确理解深度学习(Deep Learning)的概念

    现在深度学习在机器学习领域是一个很热的概念,不过经过各种媒体的转载播报,这个概念也逐渐变得有些神话的感觉:例如,人们可能认为,深度学习是一种能够模拟出人脑的神经结构的机器学习方式,从而能够让计算机具有 ...

  7. [DeeplearningAI笔记]神经网络与深度学习人工智能行业大师访谈

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 吴恩达采访Geoffrey Hinton NG:前几十年,你就已经发明了这么多神经网络和深度学习相关的概念,我其实很好奇,在这么多你发明的东西中 ...

  8. 深度学习中Dropout原理解析

    1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象. 在训练神经网络的时候经常会遇到过拟合的问题 ...

  9. 深度学习中的Normalization模型

    Batch Normalization(简称 BN)自从提出之后,因为效果特别好,很快被作为深度学习的标准工具应用在了各种场合.BN 大法虽然好,但是也存在一些局限和问题,诸如当 BatchSize ...

随机推荐

  1. linux运维常见英文报错中文翻译(菜鸟必知)

    linux常见英文报错中文翻译(菜鸟必知) 1.command not found  命令没有找到 2.No such file or directory  没有这个文件或目录 3.Permissio ...

  2. PHP通过soap调用c#的WebService

    1:C# Contact public class Contact { private int _Id; private string _Name; public int id { get { ret ...

  3. 记录EntityValidationErrors的详细信息

    0.一个问题 使用过EF的人相信都会遇到Validation failed for one or more entities. See ‘EntityValidationErrors’这种异常,这是由 ...

  4. centos 为OPENJDK配置JAVA_HOME环境变量,安装MAVEN

    1.安装开发者工具包 yum install java--openjdk-devel -y 2.配置环境变量 vim /etc/profile export JAVA_HOME=/usr/lib/jv ...

  5. HDOJ 1281 棋盘游戏

    拆点二分图匹配 棋盘游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tot ...

  6. mysql -- 优化之ICP(index condition pushdown)

    一.为了方法说明ICP是什么.假设有如下的表和查询: create table person( id int unsigned auto_increment primary key, home_add ...

  7. thinkphp AOP(面向切面编程)钩子和行为

    在软件业,AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术.AOP是OOP的延续,是软件开发中的 ...

  8. 查询系统负载信息 Linux 命令详解

    linux uptime命令主要用于获取主机运行时间和查询linux系统负载等信息.uptime命令过去只显示系统运行多久.现在,可以显示系统已经运行了多长 时间,信息显示依次为:现在时间.系统已经运 ...

  9. opencv之haar特征+AdaBoos分类器算法流程(三)

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/ ...

  10. windows下bash终端--git-bash总汇

    git bash是一个比较好用的终端(win下),但有一些细节需要调整后才好用. 1.比如,登陆后终端的表格,以及个别符号显示为乱码. 解决方法: 1).点击git bash左上角,选择“option ...