7.7:Encrypt each of the following RSA messages x so that x is divided into blocks of integers of length 2; that is, if x = 142528,encode 14,25,and 28 separately.

RSA加密方法:y=x^E mod n

计算时可采用重复乘方法(repeated squares)

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<cstdio>
using namespace std; int binary[];
double mod[]; int main()
{
int n,E,x;
while ((cin>>n>>E>>x)&&n&&E&&x)
{
memset(binary,,sizeof(binary));
memset(mod,,sizeof(mod));
for (int i=;i>=;i--)
{
if (<<i <= E)
{
binary[i]=;
E-= (<<i);
}
if (E<=0.001) break;
}
mod[]=x%n;
for (int i=;i<sizeof(binary);i++)
{
mod[i]=fmod(pow(mod[i-],),n);
}
double temp = ;
for (int i=;i<sizeof(binary);i++)
{
if (binary[i]==)
{
temp = fmod(fmod(temp,n)*fmod(mod[i],n),n);
}
}
cout<<temp<<endl;
}
return ;
}

Abstract Algebra chapter 7的更多相关文章

  1. In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in

    https://en.wikipedia.org/wiki/Congruence_relation In abstract algebra, a congruence relation (or sim ...

  2. 《A First Course in Abstract Algebra with Applications》-chaper1-数论

    由于笔者在别的专栏多次介绍过数论,这里在<抽象代数基础教程>的专栏下,对于chaper1数论这一章节介绍的方式不那么“入门”. 首先来介绍一个代数中常用也是非常重要的证明方法:数学归纳法. ...

  3. 《A First Course in Abstract Algebra with Applications》-chaper1-数论-棣莫弗定理

    定理1.24 (棣莫弗定理) 对每个实数x和每个正整数n有 基于棣莫弗定理的推论如下:

  4. 《A First Course in Abstract Algebra with Applications》-chaper1-数论-关于素数

    由于笔者在别的专栏多次介绍过数论,这里在<抽象代数基础教程>的专栏下,对于chaper1数论这一章节介绍的方式不那么“入门”. 首先来介绍一个代数中常用也是非常重要的证明方法:数学归纳法. ...

  5. 软件工程卷1 抽象与建模 (Dines Bjorner 著)

    I 开篇 1. 绪论 II 离散数学 2. 数 (已看) 3. 集合 4. 笛卡尔 5. 类型 6. 函数 7. λ演算 8. 代数 9. 数理逻辑 III 简单RSL 10. RSL中的原子类型和值 ...

  6. MIT牛人解说数学体系

    https://www.douban.com/group/topic/11115261/ 在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进. 为什 ...

  7. 【zz】MIT牛人解说数学体系

    作者:林达华 一.为什么要深入数学的世界 作为计算机的学生,我(原作者)没有任何企图要成为一个数学家.我学习数学的目 的,是要想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些. ...

  8. MIT牛人解说数学体系(转载)

    原文网址:http://www.guokr.com/post/442622/ 在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进. 为什么要深入数学 ...

  9. Mathematics for Computer Graphics数学在计算机图形学中的应用 [转]

    最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=10509 [译]Mathematics for Computer Gra ...

随机推荐

  1. 【转】Hadoop集群添加磁盘步骤

    转自:http://blog.csdn.net/huyuxiang999/article/details/17691405 一.实验环境 : 1.硬件:3台DELL服务器,CPU:2.27GHz*16 ...

  2. MySQL命令行查询乱码解决方法:

    MySQL会出现中文乱码的原因不外乎下列几点:1.server本身设定问题,例如还停留在latin1 2.table的语系设定问题(包含character与collation) 3.客户端程式(例如p ...

  3. JDK的命令行工具

    Jcmd:综合工具 jcmd -l  列出当前运行的所有虚拟机 参数-l表示列出所有java虚拟机,针对每一个虚拟机,可以使用help命令列出该虚拟机支持的所有命令 jcmd [pid] help j ...

  4. POJ1523 SPF(割点模板)

    题目求一个无向图的所有割点,并输出删除这些割点后形成几个连通分量.用Tarjan算法: 一遍DFS,构造出一颗深度优先生成树,在原无向图中边分成了两种:树边(生成树上的边)和反祖边(非生成树上的边). ...

  5. ZOJ1654 Place the Robots(二分图最大匹配)

    最大匹配也叫最大边独立集,就是无向图中能取出两两不相邻的边的最大集合. 二分图最大匹配可以用最大流来解. 如果题目没有墙,那就是一道经典的二分图最大匹配问题: 把地图上的行和列分别作为点的X部和Y部, ...

  6. 在Unity3D 4中关联Visual Studio 2012来编写C#

    Unity3D自带的MonoDevelop编辑器无论是js还是c#代码提示都很差,很诡异的就是变量名和方法名有的时候提示有的时候不提示.不过用Visual Studio代替MonoDevelop这个问 ...

  7. POJ 2891 Strange Way to Express Integers(中国剩余定理)

    题目链接 虽然我不懂... #include <cstdio> #include <cstring> #include <map> #include <cma ...

  8. hdu 3348 coins

    这道题算是一道很经典的题,很好的诠释了贪心和动态规划的不同功能.求最少钱的数量用贪心就够了,但是求最多钱的数量要用到动态规划的思想,每步都尽量保留最大 数量.具体看程序注解: #include&quo ...

  9. 怎样使用Photoshop CS5的操控变形功能

    | 浏览:23114 | 更新:2011-08-08 10:10 | 标签: photoshop 1 2 3 4 5 6 7 分步阅读 Photoshop CS5已经发布很长时间了,和以前的版本相比, ...

  10. POJ 2533 Longest Ordered Subsequence(LIS模版题)

    Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 47465   Acc ...