Python For Data Analysis -- NumPy
NumPy作为python科学计算的基础,为何python适合进行数学计算,除了简单易懂,容易学习
Python可以简单的调用大量的用c和fortran编写的legacy的库
Python科学计算的这几个库,单独安装还是蛮麻烦的,所以推荐这个包
http://www.continuum.io/downloads#all
conda list #查看所有的可安装包
conda install wxpython #安装
conda install pyqt #安装
conda update ipython #升级
轻松安装
The NumPy ndarray: A Multidimensional Array Object
ndarray,可以理解为n维数组,用于抽象矩阵和向量
Creating ndarrays
最简单的就是,从list初始化,

当然还有其他的方式,比如,


汇总,

Data Types for ndarrays
首先对于ndarray只能存放同一类型数据,

并且由于封装了c和fortran的库,大家的类型必须要统一,所以ndarrays支持如下类型,
那么各种语言中的类型,都会统一对应到这些类型


ndarray支持显式的类型转换 (copy)
int转float:

string转float:
这个比较有用,并且可以看到这里的类型写的float,NumPy会自动将python的类型转成ndarray支持的类型
Operations between Arrays and Scalars
对于ndarray里面的elems的操作,是不需要自己写for的
默认对于ndarray或shape相同的ndarray之间的操作,都是会遍历每个element的,称为vectorization,向量化

Basic Indexing and Slicing (View)
取出矩阵中的某些数据,或切分出子矩阵
对于一维向量,和python list操作基本是一致的,最大的区别,是ndarray的slicing不会copy,而是view,即你更改slicing,就相当于更改了原始数据

可以看到更改arr_slice同样会影响到arr,这样做的原因是,由于经常会操作很大的矩阵,copy会低效,所以默认是不copy的
当然你可以显式的copy,arr[5:8].copy()
二维的,参考下图,

Boolean Indexing
这个比较有特点,
对于普通的index,arr[2],这里是指定index第二个
如果我要index多个,并且不连续,怎么办?
其实你可以用一个boolean indexing来一一指定是否需要取出
比如,arr[[True, False, True,False]],注意boolean indexing必须是numpy.array, numpy.matrix也不行,必须getA转成array
对于Numpy中有matrix类的定义,比较坑爹,会混淆
一般不会手工参数这样的boolean indexing,会通过一些条件判断得到




然后你把boolean indexing代入arr就可以取出标为True那维数据
所以必须保证boolean indexing的维数和矩阵中的对应的维数是一样的
比如,
arr[[True, False, True,False]]
必须保证arr是4行的
其实每一维都是可以加上条件过滤的,比如,行选names==Bobs,列选第3列

除了在维度级别进行选择,还能对每个elem进行过滤
比如把data中,所有小于0的,都设为0
Fancy Indexing
Fancy indexing is a term adopted by NumPy to describe indexing using integer arrays.
和普通的indexing, arr[3], 不同在于,可以指定多个,并且按照指定的顺序返回

选取第4,3,0,6行

注意底下两种的区别,
相当于,取(1, 0), (5, 3), (7, 1), and (2, 2)
行,选取1,5,7,2
列,全选,换顺序

Transposing Arrays and Swapping Axes
转置,transposing
arr.T

其实转置是swapaxes的特殊版本,这个可以指定swap哪两个维度
arr.swapaxes(0, 1)
Universal Functions: Fast Element-wise Array Functions
这个上面在基本ndarray计算的时候已经介绍过,这里汇总一下
这种vectorized操作分为一元和二元的,



Data Processing Using Arrays
Expressing Conditional Logic as Array Operations
vectorized可以用于简化for循环,那么if-else可以简化吗?
numpy.where function is a vectorized version of the ternary expression x if condition else y
np.where(cond, xarr, yarr) 等同于 cond?xarr:yarr


并且,这个还可以嵌套,即如果if…elseif…..elseif……else…

Mathematical and Statistical Methods

Methods for Boolean Arrays

any和all

Unique and Other Set Logic

File Input and Output with Arrays
Storing Arrays on Disk in Binary Format (.npy)


压缩存储,并指定别名 (.npz)


Saving and Loading Text Files


Linear Algebra

Random Number Generation

Python For Data Analysis -- NumPy的更多相关文章
- 《python for data analysis》第四章,numpy的基本使用
<利用python进行数据分析>第四章的程序,介绍了numpy的基本使用方法.(第三章为Ipython的基本使用) 科学计算.常用函数.数组处理.线性代数运算.随机模块…… # -*- c ...
- Python for Data Analysis 学习心得(一) - numpy介绍
一.简介 Python for Data Analysis这本书的特点是将numpy和pandas这两个工具介绍的很详细,这两个工具是使用Python做数据分析非常重要的一环,numpy主要是做矩阵的 ...
- 数据分析---《Python for Data Analysis》学习笔记【03】
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...
- 数据分析---《Python for Data Analysis》学习笔记【02】
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...
- 数据分析---《Python for Data Analysis》学习笔记【01】
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...
- 《python for data analysis》第十章,时间序列
< python for data analysis >一书的第十章例程, 主要介绍时间序列(time series)数据的处理.label:1. datetime object.time ...
- 《python for data analysis》第九章,数据聚合与分组运算
# -*- coding:utf-8 -*-# <python for data analysis>第九章# 数据聚合与分组运算import pandas as pdimport nump ...
- 《python for data analysis》第七章,数据规整化
<利用Python进行数据分析>第七章的代码. # -*- coding:utf-8 -*-# <python for data analysis>第七章, 数据规整化 imp ...
- 《python for data analysis》第五章,pandas的基本使用
<利用python进行数据分析>一书的第五章源码与读书笔记 直接上代码 # -*- coding:utf-8 -*-# <python for data analysis>第五 ...
随机推荐
- ServletContext与ServletConfig的详解及区别
转自http://hi.baidu.com/huaxuelili/item/1704a03dbb5cd7f22784f4c6 一.ServletContext详解ServletContext是serv ...
- android JNI调用(转)
Android jni开发资料--NDK环境搭建 android开发人员注意了 谷歌改良了ndk的开发流程,对于Windows环境下NDK的开发,如果使用的NDK是r7之前的版本,必须要安装Cygwi ...
- Android Design
在android的讲解 Android Design
- 北京网络赛G BOXES 状态压缩+有序BFS+高维数组判重
#include <bits/stdc++.h> using namespace std; ]; ][]; ][][]; ][][][]; ][][][][]; ][][][][][]; ...
- SQL SERVER 与ACCESS、EXCEL的数据转换
--Excel导入到SQL的一个新思路: /*比如Excel有两列,A列和B列需要导入到SQL表中,反正我已经有几年不用DTS之类的工具了. 在Excel中的新的一列中,直接写公式 =CONCATEN ...
- 从数据库得到的结果集存放到List集合中
一.业务阐述 在开发中查询的数据库结果集,既要连接数据库.执行数据库操作.关闭数据库,还要把结果集的记录人为的设置到自己封装的DAO中等一系列的重复代码. 本文主要是想解决:用户只需要得到数据库连接, ...
- poj 1114 完全背包 dp
如果可以每个物品拿多件,则从小到大遍历,否则从大到小遍历. G - Piggy-Bank Time Limit:1000MS Memory Limit:32768KB 64bit IO ...
- cf 621D
http://acm.zzkun.com/archives/717 这个大神的解答非常,额 猥琐.但是实在是太强了.感觉所有的大数都可以用 long double 了.
- C# Remoting的一个简单例子
.Net对于远程调用提供了两种方法:Remoting和WebService.WebService现在是如火如荼,特别是有一种比较流行的架构:Winform+WebService(Java..Net), ...
- linux安装apache的纠结过程
本以为linux下安装apache是件很简单的过程.三命令就可以搞定,jxvf解压,make 编译,make install 安装就OK了.没想到这个过程还颇费周折.可能和环境有关吧.先说一下我的环境 ...