Constructing Roads In JGShining's Kingdom

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 14635    Accepted Submission(s): 4158

Problem Description
JGShining's kingdom consists of 2n(n is no more than 500,000) small cities which are located in two parallel lines.



Half of these cities are rich in resource (we call them rich cities) while the others are short of resource (we call them poor cities). Each poor city is short of exactly one kind of resource and also each rich city is rich in exactly one kind of resource.
You may assume no two poor cities are short of one same kind of resource and no two rich cities are rich in one same kind of resource. 



With the development of industry, poor cities wanna import resource from rich ones. The roads existed are so small that they're unable to ensure the heavy trucks, so new roads should be built. The poor cities strongly BS each other, so are the rich ones. Poor
cities don't wanna build a road with other poor ones, and rich ones also can't abide sharing an end of road with other rich ones. Because of economic benefit, any rich city will be willing to export resource to any poor one.



Rich citis marked from 1 to n are located in Line I and poor ones marked from 1 to n are located in Line II. 



The location of Rich City 1 is on the left of all other cities, Rich City 2 is on the left of all other cities excluding Rich City 1, Rich City 3 is on the right of Rich City 1 and Rich City 2 but on the left of all other cities ... And so as the poor ones. 



But as you know, two crossed roads may cause a lot of traffic accident so JGShining has established a law to forbid constructing crossed roads.



For example, the roads in Figure I are forbidden.








In order to build as many roads as possible, the young and handsome king of the kingdom - JGShining needs your help, please help him. ^_^
 
Input
Each test case will begin with a line containing an integer n(1 ≤ n ≤ 500,000). Then n lines follow. Each line contains two integers p and r which represents that Poor City p needs to import resources from Rich City r. Process to
the end of file.
 
Output
For each test case, output the result in the form of sample. 

You should tell JGShining what's the maximal number of road(s) can be built. 
 
Sample Input
2
1 2
2 1
3
1 2
2 3
3 1
 
Sample Output
Case 1:
My king, at most 1 road can be built. Case 2:
My king, at most 2 roads can be built. Hint Huge input, scanf is recommended.
 
 
解题思路:

这题用来练lower_bound函数的使用。

这个函数从已排好序的序列a中利用二分搜索找出指向ai>=k的ai的最小的指针。类似的函数含有upper_bound,这一函数求出的是指向ai>k的ai的最小的指针。有了它们,比如长度为n的有序数组a中的k的个数,可以这样求出

upper_bound(a,a+n,k) - lower_bound(a,a+n,k);

参考资料:http://www.cnblogs.com/cobbliu/archive/2012/05/21/2512249.html

代码:

#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;
//int dp[20];
const int inf=0x7fffffff;
//int a[7]={2,1,3,4,8,5,9};
const int maxn=500005;
int road[maxn];
int dp[maxn]; int main()
{
/*fill(dp,dp+7,inf);
for(int i=0;i<7;i++)
cout<<dp[i]<<endl;
for(int i=0;i<7;i++)
{
*lower_bound(dp,dp+7,a[i])=a[i];
}
int len=lower_bound(dp,dp+7,inf)-dp;
for(int i=0;i<len;i++)
cout<<dp[i]<<endl;*/
int n;
int from,to;
int c=1;
while(scanf("%d",&n)!=EOF)
{ fill(dp,dp+n,inf);
for(int i=0;i<n;i++)
{
scanf("%d%d",&from,&to);
road[from]=to;
}
for(int i=1;i<=n;i++)//因为题目输入的原因,这里的下标从1开始。
*lower_bound(dp,dp+n,road[i])=road[i];
int len=lower_bound(dp,dp+n,inf)-dp;
if(len==1)
{
cout<<"Case "<<c++<<":"<<endl;
cout<<"My king, at most 1 road can be built."<<endl;
}
else
{
cout<<"Case "<<c++<<":"<<endl;
cout<<"My king, at most "<<len<<" roads can be built."<<endl;
}
cout<<endl;
}
return 0;
}

附上最长上升子序列的模板:

#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;
int dp[20];
const int inf=0x7fffffff;
int a[7]={2,1,3,4,8,5,9};
const int maxn=500005;
int main()
{
fill(dp,dp+7,inf);
for(int i=0;i<7;i++)
{
*lower_bound(dp,dp+7,a[i])=a[i];
}
int len=lower_bound(dp,dp+7,inf)-dp;
for(int i=0;i<len;i++)
cout<<dp[i]<<endl;
return 0;
}

[ACM] hdu 1025 Constructing Roads In JGShining's Kingdom (最长递增子序列,lower_bound使用)的更多相关文章

  1. HDOJ(HDU).1025 Constructing Roads In JGShining's Kingdom (DP)

    HDOJ(HDU).1025 Constructing Roads In JGShining's Kingdom (DP) 点我挑战题目 题目分析 题目大意就是给出两两配对的poor city和ric ...

  2. HDU 1025 Constructing Roads In JGShining's Kingdom(二维LIS)

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  3. hdu 1025:Constructing Roads In JGShining's Kingdom(DP + 二分优化)

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  4. HDU 1025 Constructing Roads In JGShining's Kingdom[动态规划/nlogn求最长非递减子序列]

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  5. HDU 1025 Constructing Roads In JGShining's Kingdom(求最长上升子序列nlogn算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1025 解题报告:先把输入按照r从小到大的顺序排个序,然后就转化成了求p的最长上升子序列问题了,当然按p ...

  6. HDU 1025 Constructing Roads In JGShining's Kingdom(DP+二分)

    点我看题目 题意 :两条平行线上分别有两种城市的生存,一条线上是贫穷城市,他们每一座城市都刚好只缺乏一种物资,而另一条线上是富有城市,他们每一座城市刚好只富有一种物资,所以要从富有城市出口到贫穷城市, ...

  7. hdu 1025 Constructing Roads In JGShining’s Kingdom 【dp+二分法】

    主题链接:pid=1025">http://acm.acmcoder.com/showproblem.php?pid=1025 题意:本求最长公共子序列.但数据太多. 转化为求最长不下 ...

  8. hdu 1025 Constructing Roads In JGShining's Kingdom

    本题明白题意以后,就可以看出是让求最长上升子序列,但是不知道最长上升子序列的算法,用了很多YY的方法去做,最后还是超时, 因为普通算法时间复杂度为O(n*2),去搜了题解,学习了一下,感觉不错,拿出来 ...

  9. 最长上升子序列 HDU 1025 Constructing Roads In JGShining's Kingdom

    最长上升子序列o(nlongn)写法 dp[]=a[]; ; ;i<=n;i++){ if(a[i]>dp[len]) dp[++len]=a[i]; ,dp++len,a[i])=a[i ...

随机推荐

  1. c++操作符重载

    一.类型转换操作符(type conversion operator)[1] 参考: [1]. C++类型转换操作符(type conversion operator): http://www.cpp ...

  2. 做一个高效的IOS开发工程师

    最近觉得自己的开发效率太慢了,总结了一下:熟练度不够是一方面,经常用到东西查看一下,积累问题?一方面,这个无法分享的.现在主要分享的是:如何高效的用好自己的时间. 1.善用xcode. xcode实在 ...

  3. NHibernate系列文章十七:NHibernate Session管理(附程序下载)

    摘要 NHibernate的Session的管理涉及到NHibernate的两个最重要的对象ISessionFactory和ISession.ISessionFactory的生成非常消耗资源,通常都在 ...

  4. Java运算符的优先级(从高到低)

    运算符的优先级(从高到低) 优先级 描述 运算符 1 括号 ().[] 2 正负号 +.- 3 自增自减,非 ++.--.! 4 乘除,取余 *./.% 5 加减 +.- 6 移位运算 << ...

  5. CAP理论(转)

    add by zhj: CAP理论可以简单的理解为一致性,可用性,可分区性,这三者没有办法同时满足.我们使用的关系型数据库,比如MySQL,Postgresql是CA类型, 而Redis,MongoD ...

  6. Linux命令之reset - 终端屏幕混乱的终结者

    用途说明 reset命令是用来重新初始化终端的(terminal initialization).在有些情况,终端显示会混乱无比,比如不小心显示了一个二进制文件,以前我在不知道reset命令时,只好将 ...

  7. 函数的定义和声明以及this

    this = $(this)[0]; var person = { name : "lisa", age : "20", init : function(){ ...

  8. {Reship}{C#}{GDI+}GDI+画笔,线,区域类型

    =================================================================================== This article is ...

  9. 《算法设计手册》面试题解答 第五章:图的遍历 附:DFS应用之找挂接点

    第五章面试题解答 5-31. DFS和BFS使用了哪些数据结构? 解析: 其实刚读完这一章,我一开始想到的是用邻接表来表示图,但其实用邻接矩阵也能实现啊?后来才发现应该回答,BFS用队列实现:DFS可 ...

  10. CLR VIA C#委托

    1.什么是委托?委托就是一种回调函数的机制,将函数作为一个参数传递给其他对象,当该对象需要的时候调用委托来达到回调函数的目的. 通俗点的说法是:你将一件事情交给别人去做.例如你QQ里的自动回复,为了第 ...