因为欧拉函数是非完全积性函数,所以可以考虑对每个数进行分解质因数,将每个质数的解乘起来即可。

对于一个质数$p$,设它在各个数中分别出现了$b_1,b_2,...b_n$次,那么由生成函数和欧拉函数的性质得,它对答案的贡献为:

\[(\prod_{i=1}^n\frac{p^{b_i+1}-1}{p-1}-1)\times\frac{p-1}{p}+1\]

#include<cstdio>
const int N=10000010,P=1000000007;
int n,m,i,j,a[100010],tot,p[N],v[N],cnt[N],r[N],f[N],ans=1;
inline void divide(int n){
tot=0;
while(n>1){
if(!cnt[v[n]])p[tot++]=v[n];
cnt[v[n]]++,n/=v[n];
}
for(int i=0;i<tot;i++){
int j=p[i],t=j;
while(cnt[j])t=1LL*t*j%P,cnt[j]--;
f[j]=1LL*(t-1)*r[j-1]%P*f[j]%P;
}
}
int main(){
scanf("%d",&n);
for(i=1;i<=n;i++){
scanf("%d",&a[i]);
if(a[i]>m)m=a[i];
}
for(r[0]=r[1]=1,i=2;i<=m;i++){
r[i]=(-1LL*r[P%i]*(P/i)%P+P)%P;
if(!v[i])p[tot++]=v[i]=i,f[i]=1;
for(j=0;j<tot;j++){
if(i*p[j]>m)break;
v[i*p[j]]=p[j];
if(i%p[j]==0)break;
}
}
for(i=1;i<=n;i++)divide(a[i]);
for(i=2;i<=m;i++)if(v[i]==i)ans=(1LL*(f[i]+P-1)*(i-1)%P*r[i]+1)%P*ans%P;
return printf("%d",ans),0;
}

  

BZOJ3560 : DZY Loves Math V的更多相关文章

  1. BZOJ3560 DZY Loves Math V 数论 快速幂

    原文链接http://www.cnblogs.com/zhouzhendong/p/8111725.html UPD(2018-03-26):蒟蒻回来重新学数论了.更新了题解和代码.之前的怼到后面去了 ...

  2. BZOJ3560 DZY Loves Math V(欧拉函数)

    对每个质因子分开计算再乘起来.使用类似生成函数的做法就很容易统计了. #include<iostream> #include<cstdio> #include<cmath ...

  3. [BZOJ3560]DZY Loves Math V(欧拉函数)

    https://www.cnblogs.com/zwfymqz/p/9332753.html 由于欧拉函数是积性函数,可以用乘法分配律变成对每个质因子分开算最后乘起来.再由欧拉函数公式和分配律发现就是 ...

  4. 【BZOJ 3560】 3560: DZY Loves Math V (欧拉函数)

    3560: DZY Loves Math V Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 241  Solved: 133 Description ...

  5. 【bzoj3560】DZY Loves Math V 欧拉函数

    题目描述 给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). 输入 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. 输出 仅一行答案. 样例输入 3 ...

  6. 【BZOJ3960】DZY Loves Math V(数论)

    题目: BZOJ3560 分析: orz跳瓜. 欧拉函数的公式: \[\phi(n)=n(\prod \frac{p_i-1}{p_i})\] 其中 \(p_i\) 取遍 \(n\) 的所有质因子. ...

  7. bzoj 3560 DZY Loves Math V - 线性筛 - 扩展欧几里得算法

    给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). Input 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. Output 仅一行答案. Sampl ...

  8. bzoj DZY Loves Math V

    Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 509  Solved: 284[Submit][Status][Discuss] Descriptio ...

  9. DZY Loves Math系列

    link 好久没写数学题了,再这样下去吃枣药丸啊. 找一套应该还比较有意思的数学题来做. [bzoj3309]DZY Loves Math 简单推一下. \[\sum_{i=1}^n\sum_{j=1 ...

随机推荐

  1. 基于 MeanShift 算法的目标跟踪问题研究

    参考:http://www.cnblogs.com/tornadomeet/archive/2012/03/15/2398769.html MeanShift 算法作为一种基于特征的跟踪方法,基本思想 ...

  2. bellman ford优先队列优化简介模板

    #include<iostream>#include<cstdio>#include<utility>#include<queue>#include&l ...

  3. C++中new的解说

    new int;//开辟一个存放整数的存储空间,返回一个指向该存储空间的地址(即指针) new int(100);//开辟一个存放整数的空间,并指定该整数的初值为100,返回一个指向该存储空间的地址 ...

  4. 【云计算】Netflix 开源持续交付平台 Spinnaker

    oschina        发布于: 2015年11月19日 (0评)          分享到:    收藏 +1 CDS首都在线全球云主机.全球私有网络,开工送礼,免费试用! »   日前,Ne ...

  5. object-c 基本数据类型

    1.基本数据类型   int  float  double  char   布尔类型   枚举类型 2.对象类型和id类型  就是类类型或协议所声明的指针类型.  id类型可以表示任何类型,一般只表示 ...

  6. Android 中的异步下载

    网上提到最多的就是利用AsyncTask进行异步下载,用android-async-http第三方库的也比较多.这里写点注意事项. 先说说android-async-http,这个库发送请求利用thr ...

  7. 【JAVA、C++】 LeetCode 008 String to Integer (atoi)

    Implement atoi to convert a string to an integer. Hint: Carefully consider all possible input cases. ...

  8. codeforces B. Semifinals 解题报告

    题目链接:http://codeforces.com/problemset/problem/378/B 题目意思:有n个参赛者,他们都需要参加两场半决赛.第一场半决赛的成绩依次是a1, a2, ... ...

  9. Java中删除文件、删除目录及目录下所有文件

    转载自:http://www.cnblogs.com/eczhou/archive/2012/01/16/2323431.html 功能:删除某个目录及目录下的所有子目录和文件 知识点:File.de ...

  10. dt.jar设计时rt.jar运行时

    很多人在初学Java的时候,都要配置环境变量.在配置CLASSPATH的时候,都会加上一个当前目录.,还有两个jar:dt.jar和tools.jar.其实好多人都不了解这两个jar的作用,尤其是dt ...