Using MLLib in Scala
Following code snippets can be executed in spark-shell.

Binary Classification
The following code snippet illustrates how to load a sample dataset, execute a training algorithm on this training data using a static method in the algorithm object, and make predictions with the resulting model to compute the training error.

 import org.apache.spark.SparkContext
import org.apache.spark.mllib.classification.SVMWithSGD
import org.apache.spark.mllib.regression.LabeledPoint // Load and parse the data file
val data = sc.textFile("mllib/data/sample_svm_data.txt")
val parsedData = data.map { line =>
val parts = line.split(' ')
LabeledPoint(parts(0).toDouble, parts.tail.map(x => x.toDouble).toArray)
} // Run training algorithm to build the model
val numIterations = 20
val model = SVMWithSGD.train(parsedData, numIterations) // Evaluate model on training examples and compute training error
val labelAndPreds = parsedData.map { point =>
val prediction = model.predict(point.features)
(point.label, prediction)
}
val trainErr = labelAndPreds.filter(r => r._1 != r._2).count.toDouble / parsedData.count
println("Training Error = " + trainErr)

The SVMWithSGD.train() method by default performs L2 regularization with the regularization parameter set to 1.0. If we want to configure this algorithm, we can customize SVMWithSGD further by creating a new object directly and calling setter methods. All other MLlib algorithms support customization in this way as well. For example, the following code produces an L1 regularized variant of SVMs with regularization parameter set to 0.1, and runs the training algorithm for 200 iterations.

 import org.apache.spark.mllib.optimization.L1Updater

 val svmAlg = new SVMWithSGD()
svmAlg.optimizer.setNumIterations(200)
.setRegParam(0.1)
.setUpdater(new L1Updater)
val modelL1 = svmAlg.run(parsedData)

Linear Regression
The following example demonstrate how to load training data, parse it as an RDD of LabeledPoint. The example then uses LinearRegressionWithSGD to build a simple linear model to predict label values. We compute the Mean Squared Error at the end to evaluate goodness of fit

 import org.apache.spark.mllib.regression.LinearRegressionWithSGD
import org.apache.spark.mllib.regression.LabeledPoint // Load and parse the data
val data = sc.textFile("mllib/data/ridge-data/lpsa.data")
val parsedData = data.map { line =>
val parts = line.split(',')
LabeledPoint(parts(0).toDouble, parts(1).split(' ').map(x => x.toDouble).toArray)
} // Building the model
val numIterations = 20
val model = LinearRegressionWithSGD.train(parsedData, numIterations) // Evaluate model on training examples and compute training error
val valuesAndPreds = parsedData.map { point =>
val prediction = model.predict(point.features)
(point.label, prediction)
}
val MSE = valuesAndPreds.map{ case(v, p) => math.pow((v - p), 2)}.reduce(_ + _)/valuesAndPreds.count
println("training Mean Squared Error = " + MSE)

Similarly you can use RidgeRegressionWithSGD and LassoWithSGD and compare training Mean Squared Errors.

Clustering
In the following example after loading and parsing data, we use the KMeans object to cluster the data into two clusters. The number of desired clusters is passed to the algorithm. We then compute Within Set Sum of Squared Error (WSSSE). You can reduce this error measure by increasing k. In fact the optimal k is usually one where there is an “elbow” in the WSSSE graph.

 import org.apache.spark.mllib.clustering.KMeans

 // Load and parse the data
val data = sc.textFile("kmeans_data.txt")
val parsedData = data.map( _.split(' ').map(_.toDouble)) // Cluster the data into two classes using KMeans
val numIterations = 20
val numClusters = 2
val clusters = KMeans.train(parsedData, numClusters, numIterations) // Evaluate clustering by computing Within Set Sum of Squared Errors
val WSSSE = clusters.computeCost(parsedData)
println("Within Set Sum of Squared Errors = " + WSSSE)

Collaborative Filtering
In the following example we load rating data. Each row consists of a user, a product and a rating. We use the default ALS.train() method which assumes ratings are explicit. We evaluate the recommendation model by measuring the Mean Squared Error of rating prediction.

 import org.apache.spark.mllib.recommendation.ALS
import org.apache.spark.mllib.recommendation.Rating // Load and parse the data
val data = sc.textFile("mllib/data/als/test.data")
val ratings = data.map(_.split(',') match {
case Array(user, item, rate) => Rating(user.toInt, item.toInt, rate.toDouble)
}) // Build the recommendation model using ALS
val numIterations = 20
val model = ALS.train(ratings, 1, 20, 0.01) // Evaluate the model on rating data
val usersProducts = ratings.map{ case Rating(user, product, rate) => (user, product)}
val predictions = model.predict(usersProducts).map{
case Rating(user, product, rate) => ((user, product), rate)
}
val ratesAndPreds = ratings.map{
case Rating(user, product, rate) => ((user, product), rate)
}.join(predictions)
val MSE = ratesAndPreds.map{
case ((user, product), (r1, r2)) => math.pow((r1- r2), 2)
}.reduce(_ + _)/ratesAndPreds.count
println("Mean Squared Error = " + MSE)

If the rating matrix is derived from other source of information (i.e., it is inferred from other signals), you can use the trainImplicit method to get better results.

 val model = ALS.trainImplicit(ratings, 1, 20, 0.01)

Using MLLib in Java
All of MLlib’s methods use Java-friendly types, so you can import and call them there the same way you do in Scala. The only caveat is that the methods take Scala RDD objects, while the Spark Java API uses a separate JavaRDD class. You can convert a Java RDD to a Scala one by calling .rdd() on your JavaRDD object.

Using MLLib in Python
Following examples can be tested in the PySpark shell.

Binary Classification
The following example shows how to load a sample dataset, build Logistic Regression model, and make predictions with the resulting model to compute the training error.

 from pyspark.mllib.classification import LogisticRegressionWithSGD
from numpy import array # Load and parse the data
data = sc.textFile("mllib/data/sample_svm_data.txt")
parsedData = data.map(lambda line: array([float(x) for x in line.split(' ')]))
model = LogisticRegressionWithSGD.train(parsedData) # Build the model
labelsAndPreds = parsedData.map(lambda point: (int(point.item(0)),
model.predict(point.take(range(1, point.size))))) # Evaluating the model on training data
trainErr = labelsAndPreds.filter(lambda (v, p): v != p).count() / float(parsedData.count())
print("Training Error = " + str(trainErr))

Linear Regression
The following example demonstrate how to load training data, parse it as an RDD of LabeledPoint. The example then uses LinearRegressionWithSGD to build a simple linear model to predict label values. We compute the Mean Squared Error at the end to evaluate goodness of fit

 from pyspark.mllib.regression import LinearRegressionWithSGD
from numpy import array # Load and parse the data
data = sc.textFile("mllib/data/ridge-data/lpsa.data")
parsedData = data.map(lambda line: array([float(x) for x in line.replace(',', ' ').split(' ')])) # Build the model
model = LinearRegressionWithSGD.train(parsedData) # Evaluate the model on training data
valuesAndPreds = parsedData.map(lambda point: (point.item(0),
model.predict(point.take(range(1, point.size)))))
MSE = valuesAndPreds.map(lambda (v, p): (v - p)**2).reduce(lambda x, y: x + y)/valuesAndPreds.count()
print("Mean Squared Error = " + str(MSE))

Clustering
In the following example after loading and parsing data, we use the KMeans object to cluster the data into two clusters. The number of desired clusters is passed to the algorithm. We then compute Within Set Sum of Squared Error (WSSSE). You can reduce this error measure by increasing k. In fact the optimal k is usually one where there is an “elbow” in the WSSSE graph.

 from pyspark.mllib.clustering import KMeans
from numpy import array
from math import sqrt # Load and parse the data
data = sc.textFile("kmeans_data.txt")
parsedData = data.map(lambda line: array([float(x) for x in line.split(' ')])) # Build the model (cluster the data)
clusters = KMeans.train(parsedData, 2, maxIterations=10,
runs=30, initialization_mode="random") # Evaluate clustering by computing Within Set Sum of Squared Errors
def error(point):
center = clusters.centers[clusters.predict(point)]
return sqrt(sum([x**2 for x in (point - center)])) WSSSE = parsedData.map(lambda point: error(point)).reduce(lambda x, y: x + y)
print("Within Set Sum of Squared Error = " + str(WSSSE))

Similarly you can use RidgeRegressionWithSGD and LassoWithSGD and compare training Mean Squared Errors.

Collaborative Filtering
In the following example we load rating data. Each row consists of a user, a product and a rating. We use the default ALS.train() method which assumes ratings are explicit. We evaluate the recommendation by measuring the Mean Squared Error of rating prediction.

 from pyspark.mllib.recommendation import ALS
from numpy import array # Load and parse the data
data = sc.textFile("mllib/data/als/test.data")
ratings = data.map(lambda line: array([float(x) for x in line.split(',')])) # Build the recommendation model using Alternating Least Squares
model = ALS.train(ratings, 1, 20) # Evaluate the model on training data
testdata = ratings.map(lambda p: (int(p[0]), int(p[1])))
predictions = model.predictAll(testdata).map(lambda r: ((r[0], r[1]), r[2]))
ratesAndPreds = ratings.map(lambda r: ((r[0], r[1]), r[2])).join(predictions)
MSE = ratesAndPreds.map(lambda r: (r[1][0] - r[1][1])**2).reduce(lambda x, y: x + y)/ratesAndPreds.count()
print("Mean Squared Error = " + str(MSE))

If the rating matrix is derived from other source of information (i.e., it is inferred from other signals), you can use the trainImplicit method to get better results.

 # Build the recommendation model using Alternating Least Squares based on implicit ratings
model = ALS.trainImplicit(ratings, 1, 20)

spark Using MLLib in Scala/Java/Python的更多相关文章

  1. 朴素贝叶斯算法原理及Spark MLlib实例(Scala/Java/Python)

    朴素贝叶斯 算法介绍: 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法. 朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,在没有其它可用信息下,我 ...

  2. 梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python)

    梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python) http://blog.csdn.net/liulingyuan6/article/details ...

  3. 三种文本特征提取(TF-IDF/Word2Vec/CountVectorizer)及Spark MLlib调用实例(Scala/Java/python)

    https://blog.csdn.net/liulingyuan6/article/details/53390949

  4. Spark机器学习1·编程入门(scala/java/python)

    Spark安装目录 /Users/erichan/Garden/spark-1.4.0-bin-hadoop2.6 基本测试 ./bin/run-example org.apache.spark.ex ...

  5. (一)Spark简介-Java&Python版Spark

    Spark简介 视频教程: 1.优酷 2.YouTube 简介: Spark是加州大学伯克利分校AMP实验室,开发的通用内存并行计算框架.Spark在2013年6月进入Apache成为孵化项目,8个月 ...

  6. Spark: 单词计数(Word Count)的MapReduce实现(Java/Python)

    1 导引 我们在博客<Hadoop: 单词计数(Word Count)的MapReduce实现 >中学习了如何用Hadoop-MapReduce实现单词计数,现在我们来看如何用Spark来 ...

  7. (八)map,filter,flatMap算子-Java&Python版Spark

    map,filter,flatMap算子 视频教程: 1.优酷 2.YouTube 1.map map是将源JavaRDD的一个一个元素的传入call方法,并经过算法后一个一个的返回从而生成一个新的J ...

  8. Apache Spark Exception in thread “main” java.lang.NoClassDefFoundError: scala/collection/GenTraversableOnce$class

    问题: 今天用Maven搭建了一个Spark的Scala项目,运行后遇到下面异常: Apache Spark Exception in thread “main” java.lang.NoClassD ...

  9. 如何在本地使用scala或python运行Spark程序

    如何在本地使用scala或python运行Spark程序   包含两个部分: 本地scala语言编写程序,并编译打包成jar,在本地运行. 本地使用python语言编写程序,直接调用spark的接口, ...

随机推荐

  1. C++ virtual descructor

    [代码1]  C++ Code  12345678910111213141516171819202122232425262728293031323334353637383940414243444546 ...

  2. ReverseString

    [本文链接] http://www.cnblogs.com/hellogiser/p/reverse-string.html reverse string [代码]  C++ Code  123456 ...

  3. 11.python之线程,协程,进程,

    一,进程与线程 1.什么是线程 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行 ...

  4. codeforces 475A.Bayan Bus 解题报告

    题目链接:http://codeforces.com/problemset/problem/475/A 题目意思:输入一个整数 k(0 ≤ k ≤ 34),表示participants的人数,需要在一 ...

  5. HDU 4059 容斥原理+快速幂+逆元

    E - The Boss on Mars Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64 ...

  6. 在qq中可以使用添加标签功能

    而在sina中不可以,现在就保持一致吧!那么每天使用的日志主要是记录工作项目上的问题还有生活的感受

  7. UML从需求到实现---类图(2)

    上节写到了UML中的类图:UML从需求到实现---类图(1) 写完以后总觉得写的不够详细.里面很多细节没有说到.一篇文章就把强大的面向对象的类说完.当然是不可能的.这次我再补充一些关于UML中类图和类 ...

  8. Mac OS X 上的安装haskell开发环境

    到haskell官方下载haskell的工具包: https://downloads.haskell.org/~platform/2014.2.0.0/Haskell%20Platform%20201 ...

  9. canvas 在线画图

    canvas 在线画图 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...

  10. hdu 2191 完全背包

    为了挽救灾区同胞的生命,心系灾区同胞的你准备自己采购一些粮食支援灾区,现在假设你一共有资金n元,而市场有m种大米,每种大米都是袋装产品,其价格不等,并且只能整袋购买.请问:你用有限的资金最多能采购多少 ...