spark Using MLLib in Scala/Java/Python
Using MLLib in Scala
Following code snippets can be executed in spark-shell.
Binary Classification
The following code snippet illustrates how to load a sample dataset, execute a training algorithm on this training data using a static method in the algorithm object, and make predictions with the resulting model to compute the training error.
import org.apache.spark.SparkContext
import org.apache.spark.mllib.classification.SVMWithSGD
import org.apache.spark.mllib.regression.LabeledPoint // Load and parse the data file
val data = sc.textFile("mllib/data/sample_svm_data.txt")
val parsedData = data.map { line =>
val parts = line.split(' ')
LabeledPoint(parts(0).toDouble, parts.tail.map(x => x.toDouble).toArray)
} // Run training algorithm to build the model
val numIterations = 20
val model = SVMWithSGD.train(parsedData, numIterations) // Evaluate model on training examples and compute training error
val labelAndPreds = parsedData.map { point =>
val prediction = model.predict(point.features)
(point.label, prediction)
}
val trainErr = labelAndPreds.filter(r => r._1 != r._2).count.toDouble / parsedData.count
println("Training Error = " + trainErr)
The SVMWithSGD.train() method by default performs L2 regularization with the regularization parameter set to 1.0. If we want to configure this algorithm, we can customize SVMWithSGD further by creating a new object directly and calling setter methods. All other MLlib algorithms support customization in this way as well. For example, the following code produces an L1 regularized variant of SVMs with regularization parameter set to 0.1, and runs the training algorithm for 200 iterations.
import org.apache.spark.mllib.optimization.L1Updater val svmAlg = new SVMWithSGD()
svmAlg.optimizer.setNumIterations(200)
.setRegParam(0.1)
.setUpdater(new L1Updater)
val modelL1 = svmAlg.run(parsedData)
Linear Regression
The following example demonstrate how to load training data, parse it as an RDD of LabeledPoint. The example then uses LinearRegressionWithSGD to build a simple linear model to predict label values. We compute the Mean Squared Error at the end to evaluate goodness of fit
import org.apache.spark.mllib.regression.LinearRegressionWithSGD
import org.apache.spark.mllib.regression.LabeledPoint // Load and parse the data
val data = sc.textFile("mllib/data/ridge-data/lpsa.data")
val parsedData = data.map { line =>
val parts = line.split(',')
LabeledPoint(parts(0).toDouble, parts(1).split(' ').map(x => x.toDouble).toArray)
} // Building the model
val numIterations = 20
val model = LinearRegressionWithSGD.train(parsedData, numIterations) // Evaluate model on training examples and compute training error
val valuesAndPreds = parsedData.map { point =>
val prediction = model.predict(point.features)
(point.label, prediction)
}
val MSE = valuesAndPreds.map{ case(v, p) => math.pow((v - p), 2)}.reduce(_ + _)/valuesAndPreds.count
println("training Mean Squared Error = " + MSE)
Similarly you can use RidgeRegressionWithSGD and LassoWithSGD and compare training Mean Squared Errors.
Clustering
In the following example after loading and parsing data, we use the KMeans object to cluster the data into two clusters. The number of desired clusters is passed to the algorithm. We then compute Within Set Sum of Squared Error (WSSSE). You can reduce this error measure by increasing k. In fact the optimal k is usually one where there is an “elbow” in the WSSSE graph.
import org.apache.spark.mllib.clustering.KMeans // Load and parse the data
val data = sc.textFile("kmeans_data.txt")
val parsedData = data.map( _.split(' ').map(_.toDouble)) // Cluster the data into two classes using KMeans
val numIterations = 20
val numClusters = 2
val clusters = KMeans.train(parsedData, numClusters, numIterations) // Evaluate clustering by computing Within Set Sum of Squared Errors
val WSSSE = clusters.computeCost(parsedData)
println("Within Set Sum of Squared Errors = " + WSSSE)
Collaborative Filtering
In the following example we load rating data. Each row consists of a user, a product and a rating. We use the default ALS.train() method which assumes ratings are explicit. We evaluate the recommendation model by measuring the Mean Squared Error of rating prediction.
import org.apache.spark.mllib.recommendation.ALS
import org.apache.spark.mllib.recommendation.Rating // Load and parse the data
val data = sc.textFile("mllib/data/als/test.data")
val ratings = data.map(_.split(',') match {
case Array(user, item, rate) => Rating(user.toInt, item.toInt, rate.toDouble)
}) // Build the recommendation model using ALS
val numIterations = 20
val model = ALS.train(ratings, 1, 20, 0.01) // Evaluate the model on rating data
val usersProducts = ratings.map{ case Rating(user, product, rate) => (user, product)}
val predictions = model.predict(usersProducts).map{
case Rating(user, product, rate) => ((user, product), rate)
}
val ratesAndPreds = ratings.map{
case Rating(user, product, rate) => ((user, product), rate)
}.join(predictions)
val MSE = ratesAndPreds.map{
case ((user, product), (r1, r2)) => math.pow((r1- r2), 2)
}.reduce(_ + _)/ratesAndPreds.count
println("Mean Squared Error = " + MSE)
If the rating matrix is derived from other source of information (i.e., it is inferred from other signals), you can use the trainImplicit method to get better results.
val model = ALS.trainImplicit(ratings, 1, 20, 0.01)
Using MLLib in Java
All of MLlib’s methods use Java-friendly types, so you can import and call them there the same way you do in Scala. The only caveat is that the methods take Scala RDD objects, while the Spark Java API uses a separate JavaRDD class. You can convert a Java RDD to a Scala one by calling .rdd() on your JavaRDD object.
Using MLLib in Python
Following examples can be tested in the PySpark shell.
Binary Classification
The following example shows how to load a sample dataset, build Logistic Regression model, and make predictions with the resulting model to compute the training error.
from pyspark.mllib.classification import LogisticRegressionWithSGD
from numpy import array # Load and parse the data
data = sc.textFile("mllib/data/sample_svm_data.txt")
parsedData = data.map(lambda line: array([float(x) for x in line.split(' ')]))
model = LogisticRegressionWithSGD.train(parsedData) # Build the model
labelsAndPreds = parsedData.map(lambda point: (int(point.item(0)),
model.predict(point.take(range(1, point.size))))) # Evaluating the model on training data
trainErr = labelsAndPreds.filter(lambda (v, p): v != p).count() / float(parsedData.count())
print("Training Error = " + str(trainErr))
Linear Regression
The following example demonstrate how to load training data, parse it as an RDD of LabeledPoint. The example then uses LinearRegressionWithSGD to build a simple linear model to predict label values. We compute the Mean Squared Error at the end to evaluate goodness of fit
from pyspark.mllib.regression import LinearRegressionWithSGD
from numpy import array # Load and parse the data
data = sc.textFile("mllib/data/ridge-data/lpsa.data")
parsedData = data.map(lambda line: array([float(x) for x in line.replace(',', ' ').split(' ')])) # Build the model
model = LinearRegressionWithSGD.train(parsedData) # Evaluate the model on training data
valuesAndPreds = parsedData.map(lambda point: (point.item(0),
model.predict(point.take(range(1, point.size)))))
MSE = valuesAndPreds.map(lambda (v, p): (v - p)**2).reduce(lambda x, y: x + y)/valuesAndPreds.count()
print("Mean Squared Error = " + str(MSE))
Clustering
In the following example after loading and parsing data, we use the KMeans object to cluster the data into two clusters. The number of desired clusters is passed to the algorithm. We then compute Within Set Sum of Squared Error (WSSSE). You can reduce this error measure by increasing k. In fact the optimal k is usually one where there is an “elbow” in the WSSSE graph.
from pyspark.mllib.clustering import KMeans
from numpy import array
from math import sqrt # Load and parse the data
data = sc.textFile("kmeans_data.txt")
parsedData = data.map(lambda line: array([float(x) for x in line.split(' ')])) # Build the model (cluster the data)
clusters = KMeans.train(parsedData, 2, maxIterations=10,
runs=30, initialization_mode="random") # Evaluate clustering by computing Within Set Sum of Squared Errors
def error(point):
center = clusters.centers[clusters.predict(point)]
return sqrt(sum([x**2 for x in (point - center)])) WSSSE = parsedData.map(lambda point: error(point)).reduce(lambda x, y: x + y)
print("Within Set Sum of Squared Error = " + str(WSSSE))
Similarly you can use RidgeRegressionWithSGD and LassoWithSGD and compare training Mean Squared Errors.
Collaborative Filtering
In the following example we load rating data. Each row consists of a user, a product and a rating. We use the default ALS.train() method which assumes ratings are explicit. We evaluate the recommendation by measuring the Mean Squared Error of rating prediction.
from pyspark.mllib.recommendation import ALS
from numpy import array # Load and parse the data
data = sc.textFile("mllib/data/als/test.data")
ratings = data.map(lambda line: array([float(x) for x in line.split(',')])) # Build the recommendation model using Alternating Least Squares
model = ALS.train(ratings, 1, 20) # Evaluate the model on training data
testdata = ratings.map(lambda p: (int(p[0]), int(p[1])))
predictions = model.predictAll(testdata).map(lambda r: ((r[0], r[1]), r[2]))
ratesAndPreds = ratings.map(lambda r: ((r[0], r[1]), r[2])).join(predictions)
MSE = ratesAndPreds.map(lambda r: (r[1][0] - r[1][1])**2).reduce(lambda x, y: x + y)/ratesAndPreds.count()
print("Mean Squared Error = " + str(MSE))
If the rating matrix is derived from other source of information (i.e., it is inferred from other signals), you can use the trainImplicit method to get better results.
# Build the recommendation model using Alternating Least Squares based on implicit ratings
model = ALS.trainImplicit(ratings, 1, 20)
spark Using MLLib in Scala/Java/Python的更多相关文章
- 朴素贝叶斯算法原理及Spark MLlib实例(Scala/Java/Python)
朴素贝叶斯 算法介绍: 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法. 朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,在没有其它可用信息下,我 ...
- 梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python)
梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python) http://blog.csdn.net/liulingyuan6/article/details ...
- 三种文本特征提取(TF-IDF/Word2Vec/CountVectorizer)及Spark MLlib调用实例(Scala/Java/python)
https://blog.csdn.net/liulingyuan6/article/details/53390949
- Spark机器学习1·编程入门(scala/java/python)
Spark安装目录 /Users/erichan/Garden/spark-1.4.0-bin-hadoop2.6 基本测试 ./bin/run-example org.apache.spark.ex ...
- (一)Spark简介-Java&Python版Spark
Spark简介 视频教程: 1.优酷 2.YouTube 简介: Spark是加州大学伯克利分校AMP实验室,开发的通用内存并行计算框架.Spark在2013年6月进入Apache成为孵化项目,8个月 ...
- Spark: 单词计数(Word Count)的MapReduce实现(Java/Python)
1 导引 我们在博客<Hadoop: 单词计数(Word Count)的MapReduce实现 >中学习了如何用Hadoop-MapReduce实现单词计数,现在我们来看如何用Spark来 ...
- (八)map,filter,flatMap算子-Java&Python版Spark
map,filter,flatMap算子 视频教程: 1.优酷 2.YouTube 1.map map是将源JavaRDD的一个一个元素的传入call方法,并经过算法后一个一个的返回从而生成一个新的J ...
- Apache Spark Exception in thread “main” java.lang.NoClassDefFoundError: scala/collection/GenTraversableOnce$class
问题: 今天用Maven搭建了一个Spark的Scala项目,运行后遇到下面异常: Apache Spark Exception in thread “main” java.lang.NoClassD ...
- 如何在本地使用scala或python运行Spark程序
如何在本地使用scala或python运行Spark程序 包含两个部分: 本地scala语言编写程序,并编译打包成jar,在本地运行. 本地使用python语言编写程序,直接调用spark的接口, ...
随机推荐
- 【转】tomcat下部署 solr 5.3.1
本文转自:http://blog.csdn.net/lianghyan/article/details/49467207 solr下载: http://lucene.apache.org/solr/d ...
- codeforces B. Xenia and Spies 解题报告
题目链接:http://codeforces.com/problemset/problem/342/B 题目意思:有n个spy,编号从1-n,从左到右排列.现在的任务是,spy s要把信息传递到spy ...
- Java删除文件夹和文件
转载自:http://blog.163.com/wu_huiqiang@126/blog/static/3718162320091022103144516/ 以前在javaeye看到过关于Java操作 ...
- 国密SM4对称算法实现说明(原SMS4无线局域网算法标准)
国密SM4对称算法实现说明(原SMS4无线局域网算法标准) SM4分组密码算法,原名SMS4,国家密码管理局于2012年3月21日发布:http://www.oscca.gov.cn/News/201 ...
- swift复合类型
1.元组类型 (tuple) 元组就是多个元素的组合,是一个用圆括号括起来分号分隔的多个数据的一个集合体. 例如:定义一个学生变量,要求姓名 jim,年龄 19,性别 male 的元组变量为 // ...
- [转]使用VC/MFC创建一个线程池
许多应用程序创建的线程花费了大量时间在睡眠状态来等待事件的发生.还有一些线程进入睡眠状态后定期被唤醒以轮询工作方式来改变或者更新状态信息.线程池可以让你更有效地使用线程,它为你的应用程序提供一个由系统 ...
- Entity FrameWork 中使用Expression<Func<T,true>>访问数据库性能优化
问题的本质是:扩展的Where方法有四个参数重载.传进去Func<T,true>那么返回值是IEnumable的接口类型的集合,如果是Expression<Func<T,tru ...
- oracle 卸载步骤(图解)
1.卸载第一步:点击开始菜单: 步骤阅读 2 2.点击Universal Installer来实现下面 步骤阅读 3 3.点击卸载产品后出现的内容: 步骤阅读 4 4.点击打开Oracle主目录下的O ...
- poj 2635 千进制
转自:http://www.cnblogs.com/kuangbin/archive/2012/04/01/2429463.html 大致题意: 给定一个大数K,K是两个大素数的乘积的值. 再给定一个 ...
- Ubuntu各版本下载地址
Ubuntu各版本下载地址: http://old-releases.ubuntu.com/releases/