Reference:IOI2009论文

http://www.cnblogs.com/ziyi--caolu/p/3192731.html

 #include "stdio.h"
#include "string.h"
#define maxn 200010 int wa[maxn],wb[maxn],wv[maxn],ws[maxn];
int rank[maxn],height[maxn];
int r[maxn],sa[maxn];
char s1[],s2[];
int n,l1,l2,ans; int cmp(int *r,int a,int b,int l)
{
return r[a]==r[b]&&r[a+l]==r[b+l];
} void da(int *r,int *sa,int n,int m)
{
int i,j,p,*x=wa,*y=wb,*t;
for(i=; i<m; i++) ws[i]=;
for(i=; i<n; i++) ws[x[i]=r[i]]++;
for(i=; i<m; i++) ws[i]+=ws[i-];
for(i=n-; i>=; i--) sa[--ws[x[i]]]=i;
for(j=,p=; p<n; j*=,m=p)
{ for(p=,i=n-j; i<n; i++) y[p++]=i;
for(i=; i<n; i++) if(sa[i]>=j) y[p++]=sa[i]-j;
for(i=; i<n; i++) wv[i]=x[y[i]];
for(i=; i<m; i++) ws[i]=;
for(i=; i<n; i++) ws[wv[i]]++;
for(i=; i<m; i++) ws[i]+=ws[i-];
for(i=n-; i>=; i--) sa[--ws[wv[i]]]=y[i];
for(t=x,x=y,y=t,p=,x[sa[]]=,i=; i<n; i++)
x[sa[i]]=cmp(y,sa[i-],sa[i],j)?p-:p++;
}
return;
} void calheight(int *r,int *sa,int n)
{
int i,j,k=;
for(i=; i<=n; i++) rank[sa[i]]=i;
for(i=; i<n; height[rank[i++]]=k)
for(k?k--:,j=sa[rank[i]-]; r[i+k]==r[j+k]; k++);
return;
} bool _same(int lx,int ly,int l1,int l2)
{
return (((lx<=l1-) && (ly>=l1+))||((ly<=l1-) && (lx>=l1+)));
} //da(r,sa,n+1,128);
//calheight(r,sa,n);
int main()
{
scanf("%s",s1);
l1=strlen(s1);
scanf("%s",s2);
l2=strlen(s2);
for (int i=;i<l1;i++)
{
char ch=s1[i];
int tmp=ch-'a'+;
r[i]=tmp;
}
r[l1]=;
for (int i=l1+;i<l1+l2+;i++)
{
char ch=s2[i-l1-];
int tmp=ch-'a'+;
r[i]=tmp;
}
n=l1+l2+;
r[n]=; da(r,sa,n+,);
calheight(r,sa,n); ans=;
for (int i=;i<=n;i++)
{
int t1=sa[i],t2=sa[i-];
if (_same(t1,t2,l1,l2))
{
if (height[i]>ans)
ans=height[i];
}
}
printf("%d\n",ans); return ;
}

poj2774 后缀数组 求最长公共子串的更多相关文章

  1. Long Long Message (poj2774 后缀数组求最长公共子串)

    Long Long Message Time Limit: 4000MS   Memory Limit: 131072K Total Submissions: 19206   Accepted: 79 ...

  2. poj2774 Long Long Message 后缀数组求最长公共子串

    题目链接:http://poj.org/problem?id=2774 这是一道很好的后缀数组的入门题目 题意:给你两个字符串,然后求这两个的字符串的最长连续的公共子串 一般用后缀数组解决的两个字符串 ...

  3. HDU 1403 Longest Common Substring(后缀数组,最长公共子串)

    hdu题目 poj题目 参考了 罗穗骞的论文<后缀数组——处理字符串的有力工具> 题意:求两个序列的最长公共子串 思路:后缀数组经典题目之一(模版题) //后缀数组sa:将s的n个后缀从小 ...

  4. poj 2774 Long Long Message,后缀数组,求最长公共子串 hdu1403

    题意:给出两个字符串,求最长公共子串的长度. 题解:首先将两个字符串连在一起,并在中间加一个特殊字符(字串中不存在的)切割,然后两个串的最长公共字串就变成了全部后缀的最长公共前缀.这时就要用到heig ...

  5. 求最长公共子串 Longest Common Subsequence

    最长公共子串 // Longest Common Subsequence 子串有别于子序列, 子串是连续的, 而子序列可以不连续 /*--------------------------------- ...

  6. POJ 2774 Long Long Message (二分 + Hash 求最长公共子串)题解

    题意:求最长公共子串 思路:把两个串Hash,然后我们把短的作为LCS的最大可能值,然后二分长度,每次判断这样二分可不可以.判断时,先拿出第一个母串所有len长的子串,排序,然后枚举第二个母串len长 ...

  7. 文本比较算法Ⅱ——Needleman/Wunsch算法的C++实现【求最长公共子串(不需要连续)】

    算法见:http://www.cnblogs.com/grenet/archive/2010/06/03/1750454.html 求最长公共子串(不需要连续) #include <stdio. ...

  8. 后缀数组(模板题) - 求最长公共子串 - poj 2774 Long Long Message

    Language: Default Long Long Message Time Limit: 4000MS   Memory Limit: 131072K Total Submissions: 21 ...

  9. 利用后缀数组(suffix array)求最长公共子串(longest common substring)

    摘要:本文讨论了最长公共子串的的相关算法的时间复杂度,然后在后缀数组的基础上提出了一个时间复杂度为o(n^2*logn),空间复杂度为o(n)的算法.该算法虽然不及动态规划和后缀树算法的复杂度低,但其 ...

随机推荐

  1. QTP 10 安装及破解

    QTP(QuickTest Professional),是一款比较优秀的商业自动化测试工具,主要用于web项目和C/S结构程序的测试. QTP具有的一大特性:关键字驱动测试(keyword-drive ...

  2. java 11-8 在大串中查找小串的案例

    1.统计大串中小串出现的次数 举例: 在字符串"woaijavawozhenaijavawozhendeaijavawozhendehenaijavaxinbuxinwoaijavagun& ...

  3. Android Handler处理机制 ( 一 )(图+源码分析)——Handler,Message,Looper,MessageQueue

    android的消息处理机制(图+源码分析)——Looper,Handler,Message 作为一个大三的预备程序员,我学习android的一大乐趣是可以通过源码学习 google大牛们的设计思想. ...

  4. yum报错:Error: xz compression not available

    测试服务器(centos6.5)经过一段时间的折腾,有一天在上面进行yum操作时突然出现下面的报错: Error: xz compression not available 最后经过一番排查,发现原因 ...

  5. Android 界面排版的5种方式

    Android布局是应用界面开发的重要一环,在Android中,共有五种布局方式,分别是:FrameLayout(框架布局),LinearLayout (线性布局),AbsoluteLayout(绝对 ...

  6. Qt——树的搜索

    一.Qt中的树 Qt中树的实现有两种方式.第一种是使用Qt提供的QTreeWidget,很多函数都封装好,比较方便:另一种是通过QTreeView实现,设置它的数据模型,比如使用QStandardIt ...

  7. Fragment中监听onKey事件,没你想象的那么难。

    项目中越来越多的用到Fragment,在用Fragment取代TabHost的时候遇到了一个问题,我们都知道,TabHost的Tab为Activity实例,有OnKey事件,但是Fragment中没有 ...

  8. 如何在Ubuntu 14.04中安装最新版Eclipse

    想必很多开发人员都知道,Ubuntu 软件源中提供的并不是最新版本的 Eclipse,本教程就教大家如何在 Ubuntu 14.04 中快速安装 Eclipse 官方发布的最新版本. 到目前为止,Ec ...

  9. [CareerCup] 2.1 Remove Duplicates from Unsorted List 移除无序链表中的重复项

    2.1 Write code to remove duplicates from an unsorted linked list.FOLLOW UPHow would you solve this p ...

  10. 学习笔记——Maven实战(八)常用Maven插件介绍(下)

    我们都知道Maven本质上是一个插件框架,它的核心并不执行任何具体的构建任务,所有这些任务都交给插件来完成,例如编译源代码是由maven- compiler-plugin完成的.进一步说,每个任务对应 ...