题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1052

Problem Description
Here is a famous story in Chinese history.

"That was about 2300 years ago. General Tian Ji was a high official in the country Qi. He likes to play horse racing with the king and others."

"Both of Tian and the king have three horses in different classes, namely, regular, plus, and super. The rule is to have three rounds in a match; each of the horses must be used in one round. The winner of a single round takes two hundred silver dollars from the loser."

"Being the most powerful man in the country, the king has so nice horses that in each class his horse is better than Tian's. As a result, each time the king takes six hundred silver dollars from Tian."

"Tian Ji was not happy about that, until he met Sun Bin, one of the most famous generals in Chinese history. Using a little trick due to Sun, Tian Ji brought home two hundred silver dollars and such a grace in the next match."

"It was a rather simple trick. Using his regular class horse race against the super class from the king, they will certainly lose that round. But then his plus beat the king's regular, and his super beat the king's plus. What a simple trick. And how do you think of Tian Ji, the high ranked official in China?"

Were Tian Ji lives in nowadays, he will certainly laugh at himself. Even more, were he sitting in the ACM contest right now, he may discover that the horse racing problem can be simply viewed as finding the maximum matching in a bipartite graph. Draw Tian's horses on one side, and the king's horses on the other. Whenever one of Tian's horses can beat one from the king, we draw an edge between them, meaning we wish to establish this pair. Then, the problem of winning as many rounds as possible is just to find the maximum matching in this graph. If there are ties, the problem becomes more complicated, he needs to assign weights 0, 1, or -1 to all the possible edges, and find a maximum weighted perfect matching...

However, the horse racing problem is a very special case of bipartite matching. The graph is decided by the speed of the horses --- a vertex of higher speed always beat a vertex of lower speed. In this case, the weighted bipartite matching algorithm is a too advanced tool to deal with the problem.

In this problem, you are asked to write a program to solve this special case of matching problem.

 
Input
The input consists of up to 50 test cases. Each case starts with a positive integer n (n <= 1000) on the first line, which is the number of horses on each side. The next n integers on the second line are the speeds of Tian’s horses. Then the next n integers on the third line are the speeds of the king’s horses. The input ends with a line that has a single 0 after the last test case.
 
Output
For each input case, output a line containing a single number, which is the maximum money Tian Ji will get, in silver dollars.
 
题目大意:中国古代的历史故事“田忌赛马”是为大家所熟知的。话说齐王和田忌又要赛马了,他们各派出N匹马(N≤2000),每场比赛,输的一方将要给赢的一方200两黄金,如果是平局的话,双方都不必拿出钱。现在每匹马的速度值是固定而且已知的,而齐王出马也不管田忌的出马顺序。请问田忌该如何安排自己的马去对抗齐王的马,才能赢最多的钱?(摘自IOI国家集训队论文 黄劲松:《贪婪的动态规划》)
思路:传说这是一条经典题。不过看大家的方法挺复杂的(主要是证明部分……),所以我也写一下我的方法。
首先,设田忌为A,齐王为B。不妨把他们的马按速度从大到小排序。
然后用4个指针,分别指向A、B的速度最大未用马、速度最小未用马。然后扫描。
情况1:max{A} < max{B},那么反正A最好的马肯定要赢,就去赢B最好的马,这个贪心的选择能为A剩下的马留出更多的胜算。
情况2:min{A} < min{B],那么反正B最差的马肯定要输,就用A最差的马来赢,显然用更好的马来赢是不划算的。
情况3:在情况1和情况2都没有的时候,即max{A} ≤ max{B},min{A} ≤ min{B}。那么就用A最差的马去和B最好的马竞技。
证明3:若min{A} < min{B},反正A也要输,不如输给B最好的马,显然是正确的贪心;若min{A} = min{B},若此时用A最差的马和B最差的马竞技,平手。我们可以用A最差的马,跟A前面的其中一只马交换对手,结果一定不会比前者差。所以这个贪心也显然是对的。
虽然写起来有点长但是思考起来还是蛮简单的嗯嗯。
 
代码(31MS):
 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <functional>
using namespace std; const int MAXN = ; int a[MAXN], b[MAXN];
int n; int main() {
while(scanf("%d", &n) != EOF) {
if(n == ) break;
for(int i = ; i < n; ++i) scanf("%d", &a[i]);
for(int i = ; i < n; ++i) scanf("%d", &b[i]);
sort(a, a + n, greater<int>());
sort(b, b + n, greater<int>()); int la = , ra = n - , lb = , rb = n - , res = ;
while(la <= ra) {
while(la <= ra && a[la] > b[lb]) ++res, ++la, ++lb;
while(la <= ra && a[ra] > b[rb]) ++res, --ra, --rb;
if(la <= ra) res -= (a[ra] < b[lb]), --ra, ++lb;
}
printf("%d\n", * res);
}
}

HDU 1052 Tian Ji -- The Horse Racing(贪心)(2004 Asia Regional Shanghai)的更多相关文章

  1. HDU 1052 Tian Ji -- The Horse Racing(贪心)

    题目来源:1052 题目分析:题目说的权值匹配算法,有点误导作用,这道题实际是用贪心来做的. 主要就是规则的设定: 1.田忌最慢的马比国王最慢的马快,就赢一场 2.如果田忌最慢的马比国王最慢的马慢,就 ...

  2. HDU 1052 Tian Ji -- The Horse Racing (贪心)(转载有修改)

    Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  3. HDU 1052 Tian Ji -- The Horse Racing【贪心在动态规划中的运用】

    算法分析: 这个问题很显然可以转化成一个二分图最佳匹配的问题.把田忌的马放左边,把齐王的马放右边.田忌的马A和齐王的B之间,如果田忌的马胜,则连一条权为200的边:如果平局,则连一条权为0的边:如果输 ...

  4. Hdu 1052 Tian Ji -- The Horse Racing

    Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  5. hdu 1052 Tian Ji -- The Horse Racing (田忌赛马)

    Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  6. hdu 1052 Tian Ji -- The Horse Racing【田忌赛马】

    题目 这道题主要是需要考虑到各种情况:先对马的速度进行排序,然后分情况考虑: 1.当田忌最慢的马比国王最慢的马快则赢一局 2.当田忌最快的马比国王最快的马快则赢一局 3.当田忌最快的马比国王最快的马慢 ...

  7. 杭州电 1052 Tian Ji -- The Horse Racing(贪婪)

    http://acm.hdu.edu.cn/showproblem.php? pid=1052 Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS ...

  8. hdoj 1052 Tian Ji -- The Horse Racing【田忌赛马】 【贪心】

    思路:先按从小到大排序, 然后从最快的開始比(如果i, j 是最慢的一端, flag1, flag2是最快的一端 ),田的最快的大于king的 则比較,如果等于然后推断,有三种情况: 一:大于则比較, ...

  9. POJ-2287.Tian Ji -- The Horse Racing (贪心)

    Tian Ji -- The Horse Racing Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 17662   Acc ...

随机推荐

  1. Bluetooth SDP介绍

    目录 1. 概念 2. 服务记录(Service Record) 3. 服务属性(Service Attribute) 4. 服务类(Service Class) 5. 服务查找 5.1 UUID 5 ...

  2. Celery - Best Practices

    If you've worked with Django at some point you probably had the need for some background processing ...

  3. asp.net中iframe页面用jQuery向父页面传值

    在asp.net页面有时一个页面会通过iframe嵌套另一个页面,下面的例子讲述的是被嵌套的iframe页面向父页传值的一种方式,用jQuery即可. iframe页面代码: <!DOCTYPE ...

  4. OPENCV3.1+VS 坑我笔记!

    1.调用findContours()函数程序崩溃. 原因: >>分析opencv源代码,跟踪测试,进入工程:opencv_imgproc 发现findContours函数 是调用 _fin ...

  5. winston 日志管理4

    配置File Transport winston.add(winston.transports.File, options) The File transport should really be t ...

  6. Android大图片裁剪终极解决方案(上:原理分析)

    转载声明:Ryan的博客文章欢迎您的转载,但在转载的同时,请注明文章的来源出处,不胜感激! :-)  http://my.oschina.net/ryanhoo/blog/86842 约几个月前,我正 ...

  7. [转载]如何破解Excel VBA密码

    原文链接:http://yhf8377.blog.163.com/blog/static/1768601772012102111032840/ 在此之前,先强调一下,这个方法只是用来破解Excel内部 ...

  8. Python_01 在DOS环境运行python程序

    >怎么在DOS环境运行一个python程序 >>在文本编辑器中编辑程序,最后保存成   文件名.py  的格式 >>在DOS界面下找到源程序所在的路径,然后用  pyth ...

  9. TNS-01251: Cannot set trace/log directory under ADR

    试图改变监听日志的名称时,报出TNS-01251错误: $ lsnrctl LSNRCTL - Production on -JUN- :: Copyright (c) , , Oracle. All ...

  10. Java基础之处理事件——选项按钮的鼠标监听器(Lottery 2 with mouse listener)

    控制台程序. 定义监听器类有许多方式.下面把监听器类定义为单独的类MouseHandler: // Mouse event handler for a selection button import ...