快速幂(Fast Pow)
定义
快速求a^b%c的算法
原理
指数可以被二进制分解
那么a^b可以分解为a^2^k1*a^2^k2*……
又显然a^2^(k+1)=a^(2^k*2)=(a^2^k)^2
所以可以将指数在二进制下从低位向高位递推,每次将底数平方,若该位是1就将答案乘上底数,直到指数为0。
实现时可以每次将指数/2方便处理
位运算优化
x&1:取x二进制下最后一位
x>>1:x/2
代码
int quickpow(int a,int b,const int c)
{
int base=a%c,ans=;
while(b)
{
if(b&)
ans=ans*base%c;
base=base*base%c;
b>>=;
}
return ans;
}
快速幂
例题
一、序列的第k个数
根据元素之差判断是不是等差数列,不是等差数列即为等比数列
推通项公式时注意序列起始为a
#include<cstdio>
#include<cctype>
using namespace std;
#define re register int
#define ll long long
int stk[],tt;
void print(ll x)
{
if(x==)
putchar('');
else
{
if(x<)
putchar('-'),x=-x;
tt=;
while(x)
{
stk[++tt]=x%;
x/=;
}
for(re i=tt;i;i--)
putchar(stk[i]|);
}
}
int read()
{
int x=,f=;
char c=getchar();
while(!isdigit(c))
{
f|=c=='-';
c=getchar();
}
while(isdigit(c))
{
x=(x<<)+(x<<)+(c^);
c=getchar();
}
return f?-x:x;
}
const int MOD=;
ll quickpow(int a,int b,const int c)
{
ll base=a%c,ans=;
while(b)
{
if(b&)
ans=ans*base%c;
base=base*base%c;
b>>=;
}
return ans;
}
int main()
{
int T=read();
ll a,b,c,k;
while(T--)
{
a=read(),b=read(),c=read(),k=read();
if(b-a==c-b)
print((a+(b-a)*(k-))%MOD);
else
print(a*quickpow(b/a,k-,MOD)%MOD);
putchar('\n');
}
return ;
}
序列的第k个数
二、[NOIP2013]转圈游戏
走10^k轮即移动m*10^k个位置,再加上x取模即可
#include<cstdio>
#include<cctype>
using namespace std;
#define re register int
#define ll long long
int stk[],tt;
void print(int x)
{
if(x==)
putchar('');
else
{
if(x<)
putchar('-'),x=-x;
tt=;
while(x)
{
stk[++tt]=x%;
x/=;
}
for(re i=tt;i;i--)
putchar(stk[i]|);
}
}
int read()
{
int x=,f=;
char c=getchar();
while(!isdigit(c))
{
f|=c=='-';
c=getchar();
}
while(isdigit(c))
{
x=(x<<)+(x<<)+(c^);
c=getchar();
}
return f?-x:x;
}
ll quickpow(int a,int b,const int c)
{
ll base=a%c,ans=;
while(b)
{
if(b&)
ans=ans*base%c;
base=base*base%c;
b>>=;
}
return ans;
}
int main()
{
int n=read(),m=read(),k=read(),x=read();
ll ans=(x+m*quickpow(,k,n))%n;
print(ans);
putchar('\n');
return ;
}
转圈游戏
三、[HNOI2008]越狱
可越狱方案数不好求,但从容斥原理的角度,答案可以表示成总排列数-不可越狱排列数
这两个数都很好求,总排列数=m^n,不可越狱排列数考虑第一个数有m种选法,后面每个数都只有m-1种选法,于是=m*(m-1)^(n-1)
#include<cstdio>
#include<cctype>
using namespace std;
#define re register int
#define ll long long
int stk[],tt;
void print(int x)
{
if(x==)
putchar('');
else
{
if(x<)
putchar('-'),x=-x;
tt=;
while(x)
{
stk[++tt]=x%;
x/=;
}
for(re i=tt;i;i--)
putchar(stk[i]|);
}
}
ll read()
{
ll x=;
int f=;
char c=getchar();
while(!isdigit(c))
{
f|=c=='-';
c=getchar();
}
while(isdigit(c))
{
x=(x<<)+(x<<)+(c^);
c=getchar();
}
return f?-x:x;
}
const int MOD=;
ll quickpow(int a,ll b)
{
ll base=a%MOD,ans=;
while(b)
{
if(b&)
ans=ans*base%MOD;
base=base*base%MOD;
b>>=;
}
return ans;
}
inline int mod(ll a)
{
a%=MOD;
if(a<)
a+=MOD;
return a;
}
int main()
{
ll m=read(),n=read();
print(mod(quickpow(m,n)-m*quickpow(m-,n-)));
putchar('\n');
return ;
}
越狱
注意事项
1、根据题目数据范围适当修改快速幂函数中数据的类型
2、取模的数可能<0时注意实际意义
快速幂(Fast Pow)的更多相关文章
- hdu 1757 矩阵快速幂 **
一看正确率这么高,以为是水题可以爽一发,结果是没怎么用过的矩阵快速幂,233 题解链接:点我 #include<iostream> #include<cstring> ; us ...
- HUST 1569(Burnside定理+容斥+数位dp+矩阵快速幂)
传送门:Gift 题意:由n(n<=1e9)个珍珠构成的项链,珍珠包含幸运数字(有且仅由4或7组成),取区间[L,R]内的数字,相邻的数字不能相同,且旋转得到的相同的数列为一种,为最终能构成多少 ...
- A Simple Math Problem(矩阵快速幂)(寒假闭关第一题,有点曲折啊)
A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- hdu4965 Fast Matrix Calculation (矩阵快速幂 结合律
http://acm.hdu.edu.cn/showproblem.php?pid=4965 2014 Multi-University Training Contest 9 1006 Fast Ma ...
- LeetCode 50 - Pow(x, n) - [快速幂]
实现 pow(x, n) ,即计算 x 的 n 次幂函数. 示例 1: 输入: 2.00000, 10输出: 1024.00000 示例 2: 输入: 2.10000, 3输出: 9.26100 示例 ...
- LeetCode Pow(x, n) (快速幂)
题意 Implement pow(x, n). 求X的N次方. 解法 用正常的办法来做是会超时的,因为可能有21亿次方的情况,所以需要优化一下.这里用到了快速幂算法,简单来说就是将指数分解成二进制的形 ...
- HDU4965 Fast Matrix Calculation —— 矩阵乘法、快速幂
题目链接:https://vjudge.net/problem/HDU-4965 Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Othe ...
- hdu4965 Fast Matrix Calculation 矩阵快速幂
One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...
- HDU - 4965 Fast Matrix Calculation 【矩阵快速幂】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4965 题意 给出两个矩阵 一个A: n * k 一个B: k * n C = A * B M = (A ...
随机推荐
- Spring 由缓存切点驱动的通知者
Spring 缓存通知者和切点 缓存切点 /** * Spring 核心切点抽象 */ public interface Pointcut { /** * 类过滤器,当前切点是否需要织入在指定的类上 ...
- 用Vue来实现音乐播放器(二十三):音乐列表
当我们将音乐列表往上滑的时候 我们上面的歌手图片部分也会变小 当我们将音乐列表向下拉的时候 我们的图片会放大 当我们将音乐列表向上滑的时候 我们的图片有一个高斯模糊的效果 并且随着我们的列 ...
- 阶段3 1.Mybatis_06.使用Mybatis完成DAO层的开发_9 typeAliases标签和package标签
配置别名 上面制定了好了别名后,映射文件就可以简写了.不区分大小写 皆可以小写也可以大写 大小写混着也可以 测试 package 直接把com.itheima.domain下面所有的类都注册了 可以使 ...
- Python学习之==>常用字符串方法
1.常用字符串方法 a = '\n 字 符 串 \n\n' b = a.strip() # 默认去掉字符串两边的空格和换行符 c = a.lstrip() # 默认去掉字符串左边的空格和换行符 d = ...
- 查看dll中的函数(方法)
https://jingyan.baidu.com/article/5553fa82b953b365a23934b7.html 查看dll中的函数(方法) 听语音 | 浏览:2004 | 更新:201 ...
- Delphi的类与继承
既然已经做出了com程序用delphi来开发的决定,那当然就要对delphi进行一些深入的了解.有人说delphi是一个用控件堆砌起来的工具,和vb没什么两样:也有人说dephi实际上是面向过程的,他 ...
- IntlliJ IDEA 注册码获取或离线破解
JB 的软件还是挺好用的,建议有钱的话支持正版.. IntelliJ IDEA 有开源版,但是要想玩企业级开发,还是得用收费版. 不管哪种方式,使用前都需要把"0.0.0.0 account ...
- 封装一个windows转发端口的脚本
使用方法: 1.打开文本编辑工具如(Notepad++) 2.新建文件 3.注意:修改文本的编码字符集为:gb2312 4.将下面代码 复制入文件 5.保存文件名为:transmit.bat 6.双击 ...
- 深度学习之美(张玉宏)——第四章 人生苦短我用python
1 函数参数 (1)收集参数:以一个星号*加上形参名的方式,表示这个函数的实参个数不定,可能0个可能n个. def varParaFun(name,*param): print('位置参数是:',na ...
- (3.5)常用知识-NULL与零长度、字符串尾部填充空格
概述:NULL与零长度是不同的,NULL表示数据未知或不可用,它是与零(数值或2进制).零长度字符串不 同的一种值,也可以理解为一种状态. 即可以理解为:所有的变量都有2种状态,一种有值,一种为NUL ...