bzoj4011 [HNOI2015]落忆枫音 拓扑排序+DP
题目传送门
https://lydsy.com/JudgeOnline/problem.php?id=4011
题解
首先考虑如果没有那么一条被新加进来的奇怪的边的做法。
我们只需要给每一个点挑一个父亲就可以接上去了,所以答案应该是每一个点的入度的乘积。
但是有了那样一条新加进来的边以后,如果破坏了原图的 DAG 性,导致如果直接选入度的话会可能有环。我们可以先直接和上面一样统计入度乘积,然后去掉不合法的方案。
不合法的方案就是存在环的方案。因为环是新加的边 \((x, y)\) 带来的,所以新加的 \((x, y)\) 一定在环中。所以每一条环都是从 \(y\) 到 \(x\) 的路径加上整条边。
我们需要统计每一条路径的不在这条路径上的点的入度乘积和即可。
预处理逆元以后,时间复杂度 \(O(n)\)。
#include<bits/stdc++.h>
#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back
template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;}
typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
}
const int N = 100000 + 7;
const int M = 200000 + 7;
const int P = 1e9 + 7;
int n, m, ex, ey, ans;
int q[N], idg[N], idg2[N], dp[N], vis[N];
struct Edge { int to, ne; } g[M]; int head[N], tot;
inline void addedge(int x, int y) { g[++tot].to = y, g[tot].ne = head[x], head[x] = tot; }
inline void adde(int x, int y) { addedge(x, y), addedge(y, x); }
inline int smod(int x) { return x >= P ? x - P : x; }
inline void sadd(int &x, const int &y) { x += y; x >= P ? x -= P : x; }
inline int fpow(int x, int y) {
int ans = 1;
for (; y; y >>= 1, x = (ll)x * x % P) if (y & 1) ans = (ll)ans * x % P;
return ans;
}
int fac[N], inv[N], ifac[N];
inline void ycl(const int &n = ::n) {
fac[0] = 1; for (int i = 1; i <= n; ++i) fac[i] = (ll)fac[i - 1] * i % P;
inv[1] = 1; for (int i = 2; i <= n; ++i) inv[i] = (ll)(P - P / i) * inv[P % i] % P;
ifac[0] = 1; for (int i = 1; i <= n; ++i) ifac[i] = (ll)ifac[i - 1] * inv[i] % P;
}
inline int C(int x, int y) {
if (x < y) return 0;
return (ll)fac[x] * ifac[y] % P * ifac[x - y] % P;
}
inline void dfs(int x) {
vis[x] = 1;
for fec(i, x, y) {
++idg[y];
if (!vis[y]) dfs(y);
}
}
inline void work() {
ycl();
ans = 1, idg[1] = 1, ++idg[ey];
for (int i = 1; i <= n; ++i) ans = (ll)ans * idg[i] % P;
memcpy(idg2, idg, sizeof(int) * (n + 1));
memset(idg, 0, sizeof(int) * (n + 1));
dfs(ey);
int hd = 0, tl = 0;
dp[ey] = ans, q[++tl] = ey;
while (hd < tl) {
int x = q[++hd];
dp[x] = (ll)dp[x] * inv[idg2[x]] % P;
for fec(i, x, y) {
sadd(dp[y], dp[x]);
if (!--idg[y]) q[++tl] = y;
}
}
if (vis[ex]) sadd(ans, P - dp[ex]);
printf("%d\n", ans);
}
inline void init() {
read(n), read(m), read(ex), read(ey);
int x, y;
for (int i = 1; i <= m; ++i) read(x), read(y), addedge(x, y), ++idg[y];
}
int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}
bzoj4011 [HNOI2015]落忆枫音 拓扑排序+DP的更多相关文章
- bzoj4011[HNOI2015]落忆枫音 dp+容斥(?)
4011: [HNOI2015]落忆枫音 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1125 Solved: 603[Submit][Statu ...
- BZOJ4011:[HNOI2015]落忆枫音(DP,拓扑排序)
Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们也 ...
- BZOJ4011 HNOI2015落忆枫音(动态规划+拓扑排序)
DAG中每个点选一条入边就可以构成一棵有向树,所以如果没有环答案就是∏degreei. 考虑去掉含环的答案.可以看做把环缩点,剩下的点仍然可以任意选入边.于是去除的方案数即为∏degreei/∏deg ...
- [BZOJ4011][HNOI2015]落忆枫音:拓扑排序+容斥原理
分析 又是一个有故事的题目背景.作为玩过原作的人,看题目背景都快看哭了ToT.强烈安利本境系列,话说SP-time的新作要咕到什么时候啊. 好像扯远了嘛不管了. 一句话题意就是求一个DAG再加上一条有 ...
- BZOJ4011: [HNOI2015]落忆枫音
Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们 ...
- [BZOJ4011][HNOI2015]落忆枫音-[dp乱搞+拓扑排序]
Description 传送门 Solution 假如我们的图为DAG图,总方案数ans为每个点的入度In相乘(不算1号点).(等同于在每个点的入边选一条边,最后一定构成一棵树). 然而如果加了边x- ...
- [BZOJ4011][HNOI2015] 落忆枫音(学习笔记) - 拓扑+DP
其实就是贴一下防止自己忘了,毕竟看了题解才做出来 Orz PoPoQQQ 原文链接 Description 背景太长了 给定一个DAG,和一对点(x, y), 在DAG中由x到y连一条有向边,求生成树 ...
- luogu3244 bzoj4011 HNOI2015 落忆枫音
这道题目题面真长,废话一堆. 另外:这大概是我第一道独立做出来的HNOI2011年以后的题目了吧.像我水平这么差的都能做出来,dalao您不妨试一下自己想想? 题目大意:给一个DAG,其中1号点没有入 ...
- BZOJ4011: [HNOI2015]落忆枫音(dp 乘法原理)
题意 题目链接 Sol 非常妙的一道题 设\(inder[i]\)表示\(i\)号节点的度数 首先如果是个DAG的话,可以考虑在每个点的入边中选一条边作为树形图上的边,这样\(ans = \prod_ ...
随机推荐
- webpack前置知识2(JavaScript项目初始化)
所有的JavaScript项目都是在终端输入npm init -y进行项目初始化,如果要自定义项目规则,去掉 -y 参数. vscode终端快捷键ctrl+` 初始化 运行上述命令后,项目内会新建一个 ...
- [论文笔记] Improving Head Pose Estimation with a Combined Loss and Bounding Box Margin Adjustment
Improving Head Pose Estimation with a Combined Loss and Bounding Box Margin Adjustment 简介 本文提出了一种网络结 ...
- leetcode-mid-dynamic programming-55. Jump Game
mycode 71.47% 思路: 既然要到达终点,那么俺就可以倒推,要想到达n,可以有以下情况 1)到达n-1,然后该位置最少可以走一步 2)到达n-2,然后该位置最少可以走两步 3)到达n-3, ...
- Python深度学习读书笔记-5.Keras 简介
Keras 重要特性 相同的代码可以在 CPU 或 GPU 上无缝切换运行. 具有用户友好的 API,便于快速开发深度学习模型的原型. 内置支持卷积网络(用于计算机视觉).循环网络(用于序列处理)以及 ...
- mysql在linux下连接超慢的问题及解决办法
今天一来公司发现mysql连接很慢很慢!!!!不知为啥!! 从其它地方连接MySQL数据库的时候,有时候很慢.慢的原因有可能是MySQL进行反向DNS解析造成的,这里简单介绍下原理,需要的朋友可以参考 ...
- 四十三、jenkins启动时报错:consider increasing the maximum size of the cache. After eviction approximately [10,239] KB of data
jenkins启动时报错: consider increasing the maximum size of the cache. After eviction approximately [10,23 ...
- django连接和游标
连接和游标主要实现 PEP 249中描述的Python DB API标准——除非它涉及到事务处理. 如果你不熟悉Python DB-API,注意cursor.execute()中的SQL语句使用占位符 ...
- 【ABAP系列】SAP 如何用ABAP实现自动发送外部邮件
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP 如何用ABAP实现自动发 ...
- VMware克隆虚拟机后mac地址重新设置
ifconfig eth1 确定新网卡的MAC地址. nmcli con 确定新网卡的UUID vim /etc/udev/rules.d/70-persistent-net.rules 把原et ...
- 《React+Redux前端开发实战》笔记1:不涉及React项目构建的Hello World案例
本小节实现一个不涉及项目构建的Hello World. [React的第一个Hello World网页] 源码地址:https://jsfiddle.net/allan91/2h1sf0ky/8/ & ...