[轉]udp_sendmsg空指针漏洞分析 by wzt
udp_sendmsg空指针漏洞分析 by wzt
由于Linux ipv4协议栈中udp_sendmsg()函数设计上存在缺陷, 导致struct rtable *rt以空指针形式传递给ip_append_data(), 从而引发kernel oops,
攻击者可以利用此漏洞提升进程权限。漏洞影响2.6.19以下的版本。
漏洞成因:
>> linux+v2.6.18/net/ipv4/udp.c
int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
size_t len)
{
...
// rt被初始化成NULL
struct rtable *rt = NULL;
...
// Linux udp协议允许多个udp数据包合并成一个发送出去,提高发送效率。
// 判断是否有更多的数据需要发送, 攻击者可以构造多个sendto/sendmsg调用, 并且配合MSG_PROXY|MSG_MORE标志, 进而绕过对rt的设置。
if (up->pending) {
/*
* There are pending frames.
* The socket lock must be held while it's corked.
*/
lock_sock(sk);
if (likely(up->pending)) {
if (unlikely(up->pending != AF_INET)) {
release_sock(sk);
return -EINVAL;
}
// 将数据发送出去
goto do_append_data;
}
release_sock(sk);
}
...
// rt直接以NULL传递给ip_append_data, ip_append_data没有判断空指针情况, 从而引发漏洞
do_append_data:
up->len += ulen;
err = ip_append_data(sk, ip_generic_getfrag, msg->msg_iov, ulen,
sizeof(struct udphdr), &ipc, rt,
corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
...
}
如何触发漏洞:
if((fd=socket(PF_INET,SOCK_DGRAM,0))==-1){
perror("[-] socket()");
return -1;
}
x0x.sa_family=AF_UNSPEC;
memset(x0x.sa_data,0x82,14);
memset((char *)buf,0,sizeof(buf));
sendto(fd,buf,1024,MSG_PROXY | MSG_MORE,&x0x,sizeof(x0x));
sendto(fd,buf,1024,0,&x0x,sizeof(x0x));
socket的中断服务程序是sys_socketcall, 在linux-2.6.18/net/socket.c中:
>> sys_socketcall将会调用sys_socket
asmlinkage long sys_socketcall(int call, unsigned long __user *args)
{
...
switch(call)
{
case SYS_SOCKET:
err = sys_socket(a0,a1,a[2]);
break;
...
}
>> sys_socket调用sock_create进行初始化, 然后调用sock_map_fd与sockfs文件系统进行挂接。
asmlinkage long sys_socket(int family, int type, int protocol)
{
int retval;
struct socket *sock;
retval = sock_create(family, type, protocol, &sock);
if (retval < 0)
goto out;
retval = sock_map_fd(sock);
if (retval < 0)
goto out_release;
out:
/* It may be already another descriptor 8) Not kernel problem. */
return retval;
out_release:
sock_release(sock);
return retval;
}
>> sock_create
int sock_create(int family, int type, int protocol, struct socket **res)
{
return __sock_create(family, type, protocol, res, 0);
}
>> __sock_create
static int __sock_create(int family, int type, int protocol, struct socket **res, int kern)
{
// 分配sock结构并进行填充
if (!(sock = sock_alloc())) {
if (net_ratelimit())
printk(KERN_WARNING "socket: no more sockets\n");
err = -ENFILE; /* Not exactly a match, but its the closest posix thing */
goto out;
}
...
// 这里进行具体协议的初始化操作, 执行ipv4驱动的create函数, 这个指针是在ipx驱动加载到内核时初始化的
if ((err = net_families[family]->create(sock, protocol)) < 0) {
sock->ops = NULL;
goto out_module_put;
}
...
}
继续跟踪ipv4驱动的初始化过程, /linux-2.6.18/net/ipv4/af_inet.c:
static int __init inet_init(void)
{
// 注册ipv4的struct net_proto_family操作函数
(void)sock_register(&inet_family_ops);
}
>> sock_register
int sock_register(struct net_proto_family *ops)
{
...
net_family_write_lock();
err = -EEXIST;
if (net_families[ops->family] == NULL) {
//将ops指针赋值给net_families[ops->family]
net_families[ops->family]=ops;
err = 0;
}
}
// 从这里可以看出__sock_create中的net_families[family]->create函数是在这里进行初始化的。
static struct net_proto_family inet_family_ops = {
.family = PF_INET,
.create = inet_create,
.owner = THIS_MODULE,
};
继续跟踪inet_create函数:
static int inet_create(struct socket *sock, int protocol)
{
struct sock *sk;
struct list_head *p;
struct inet_protosw *answer;
struct inet_sock *inet;
struct proto *answer_prot;
...
// 设置sock->ops;
sock->ops = answer->ops;
...
// 设置sk->sk_prot
sk = sk_alloc(PF_INET, GFP_KERNEL, answer_prot, 1);
...
}
onst struct proto_ops inet_dgram_ops = {
.family = PF_INET,
.owner = THIS_MODULE,
.release = inet_release,
.bind = inet_bind,
.connect = inet_dgram_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.getname = inet_getname,
.poll = udp_poll,
.ioctl = inet_ioctl,
.listen = sock_no_listen,
.shutdown = inet_shutdown,
.setsockopt = sock_common_setsockopt,
.getsockopt = sock_common_getsockopt,
.sendmsg = inet_sendmsg,
.recvmsg = sock_common_recvmsg,
.mmap = sock_no_mmap,
.sendpage = inet_sendpage,
#ifdef CONFIG_COMPAT
.compat_setsockopt = compat_sock_common_setsockopt,
.compat_getsockopt = compat_sock_common_getsockopt,
#endif
};
static struct inet_protosw inetsw_array[] =
{
{
.type = SOCK_STREAM,
.protocol = IPPROTO_TCP,
.prot = &tcp_prot,
.ops = &inet_stream_ops,
.capability = -1,
.no_check = 0,
.flags = INET_PROTOSW_PERMANENT |
INET_PROTOSW_ICSK,
},
{
.type = SOCK_DGRAM,
.protocol = IPPROTO_UDP,
.prot = &udp_prot,
.ops = &inet_dgram_ops,
.capability = -1,
.no_check = UDP_CSUM_DEFAULT,
.flags = INET_PROTOSW_PERMANENT,
},
{
.type = SOCK_RAW,
.protocol = IPPROTO_IP, /* wild card */
.prot = &raw_prot,
.ops = &inet_sockraw_ops,
.capability = CAP_NET_RAW,
.no_check = UDP_CSUM_DEFAULT,
.flags = INET_PROTOSW_REUSE,
}
};
通过inet_register_protosw函数将以上数据结构关联起来,sys_sendto函数将会用到。
asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags,
struct sockaddr __user *addr, int addr_len)
{
...
err = sock_sendmsg(sock, &msg, len);
...
}
int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
{
...
ret = __sock_sendmsg(&iocb, sock, msg, size);
...
}
static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
struct msghdr *msg, size_t size)
{
...
// 通过前面的分析可以知道sock->ops->sendmsg函数调用的就是udp_sendmsg(), 此函数存在设计缺陷, 从而引发漏洞。
return sock->ops->sendmsg(iocb, sock, msg, size);
...
}
如何修补:
一、Linux kernel社区已经发出补丁:
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blobdiff;f=net/ipv4/udp.c;h=865d75214a9ab1d741f3d8351359e95a0d8394e7;hp=6d6142f9c478baa8c85dcf1d174a5a88f66d783a;hb=1e0c14f49d6b393179f423abbac47f85618d3d46;hpb=132a55f3c5c0b1a364d32f65595ad8838c30a60e
diff --git a/net/ipv4/udp.c b/net/ipv4/udp.c
index 6d6142f..865d752 100644 (file)
--- a/net/ipv4/udp.c
+++ b/net/ipv4/udp.c
@@ -675,6 +675,8 @@ do_append_data:
udp_flush_pending_frames(sk);
else if (!corkreq)
err = udp_push_pending_frames(sk, up);
+ else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
+ up->pending = 0;
release_sock(sk);
out:
二、redhat补丁 RHSA-2009:1223 – Security Advisory https://rhn.redhat.com/rhn/errata/details/Packages.do?eid=8969
三、 邮件列表给出的另一个补丁, 只能用在最新的内核上, 所以并不是这个漏洞的补丁。
diff -r b3cbf0ceeb34 net/ipv4/ip_output.c
--- a/net/ipv4/ip_output.c Mon Aug 24 14:48:29 2009 +0200
+++ b/net/ipv4/ip_output.c Thu Aug 27 15:20:36 2009 +0200
@@ -814,6 +814,8 @@
inet->cork.addr = ipc->addr;
}
rt = *rtp;
+ if (unlikely(!rt))
+ return -EFAULT;
/*
* We steal reference to this route, caller should not release it
*/
[轉]udp_sendmsg空指针漏洞分析 by wzt的更多相关文章
- Zabbix 漏洞分析
之前看到Zabbix 出现SQL注入漏洞,自己来尝试分析. PS:我没找到3.0.3版本的 Zabbix ,暂用的是zabbix 2.2.0版本,如果有问题,请大牛指点. 0x00 Zabbix简介 ...
- PHPCMS \phpcms\modules\member\index.php 用户登陆SQL注入漏洞分析
catalog . 漏洞描述 . 漏洞触发条件 . 漏洞影响范围 . 漏洞代码分析 . 防御方法 . 攻防思考 1. 漏洞描述2. 漏洞触发条件 0x1: POC http://localhost/p ...
- CVE-2016-0143 漏洞分析(2016.4)
CVE-2016-0143漏洞分析 0x00 背景 4月20日,Nils Sommer在exploitdb上爆出了一枚新的Windows内核漏洞PoC.该漏洞影响所有版本的Windows操作系统,攻击 ...
- Java反序列化漏洞分析
相关学习资料 http://www.freebuf.com/vuls/90840.html https://security.tencent.com/index.php/blog/msg/97 htt ...
- CVE-2014-1767 漏洞分析(2015.1)
CVE-2014-1767 漏洞分析 1. 简介 该漏洞是由于Windows的afd.sys驱动在对系统内存的管理操作中,存在着悬垂指针的问题.在特定情况下攻击者可以通过该悬垂指针造成内存的doubl ...
- CVE-2014-4115漏洞分析(2014.11)
CVE-2014-4115漏洞分析 一.简介 该漏洞是由于Windows的Fastfat.sys组件在处理FAT32格式的硬盘分区存在问题.攻击者利用成功可导致权限提升. 影响的系统包括: Windo ...
- FFmpeg任意文件读取漏洞分析
这次的漏洞实际上与之前曝出的一个 CVE 非常之类似,可以说是旧瓶装新酒,老树开新花. 之前漏洞的一篇分析文章: SSRF 和本地文件泄露(CVE-2016-1897/8)http://static. ...
- CVE-2016-10190 FFmpeg Http协议 heap buffer overflow漏洞分析及利用
作者:栈长@蚂蚁金服巴斯光年安全实验室 -------- 1. 背景 FFmpeg是一个著名的处理音视频的开源项目,非常多的播放器.转码器以及视频网站都用到了FFmpeg作为内核或者是处理流媒体的工具 ...
- Oracle漏洞分析(tns_auth_sesskey)
p216 Oracle漏洞分析: 开启oracle: C:\oracle\product\\db_1\BIN\sqlplus.exe /nolog conn sys/mima1234 as sysdb ...
随机推荐
- qq传文件测试用例设计
- 组件化框架设计之阿里巴巴开源路由框架——ARouter原理分析(一)
阿里P7移动互联网架构师进阶视频(每日更新中)免费学习请点击:https://space.bilibili.com/474380680 背景 当项目的业务越来越复杂,业务线越来越多的时候,就需要按照业 ...
- java异常不匹配问题
java的异常处理是为了提高程序健壮性的. 当发生异常的时候,我们把这个异常捕获到,或者throw出去.然后对这些异常的情况进行处理.并且异常发生之后的代码仍然会执行,这样就能提高程序的健壮性.如下 ...
- fiddler抓取手机端的数据流量包
1.首先下载安装fiddler 2.然后打开fiddler,进入到tools-->options-->connections 3.然后进入到https 4.设置完成后,查找本机ip 然后打 ...
- 【转】C++ STL中常见容器的时间复杂度
map, set, multimap, and multiset 上述四种容器采用红黑树实现,红黑树是平衡二叉树的一种.不同操作的时间复杂度近似为: 插入: O(logN) 查看:O(logN) 删除 ...
- python杂货
三.字典的基本操作 1.如何访问字典中的值? adict[key] 形式返回键key对应的值value,如果key不在字典中会引发一个KeyError. adict.get(key, default ...
- 2019牛客暑期多校训练营(第六场)C E H G
C Palindrome Mouse E Androgynos 参考https://blog.csdn.net/birdmanqin/article/details/98479219这位大佬的.构造题 ...
- Jmeter接口压力测试(先登录再测接口)
Jmeter测试接口(包括登陆操作) 1. 创建HTTP Request先登录 参考: http://blog.csdn.net/ab_2016/article/details/782496 ...
- Sass-属性嵌套
Sass 中还提供属性嵌套,CSS 有一些属性前缀相同,只是后缀不一样,比如:border-top/border-right,与这个类似的还有 margin.padding.font 等属性.假设你的 ...
- js error监控
window.onerror = function(message, source, lineno, colno, error) { ... } 功能参数: message:错误消息(字符串).eve ...