题解

我们可以先写出\(dp\)式来。

设\(dp[u][i]\)表示以\(u\)为根的子树深度不超过\(i-1\)的概率

\(dp[u][i]=\prod (dp[v][i-1]+1)*\frac{1}{2}\)

然后因为这道题精度要求比较低,所以我们对于每个\(u\),保留第二维60个就行了。

所以每次加入一个节点的时候,我们只需要更新父链上60个\(dp\)值就好了,复杂度\(O(n*60)\)。

代码

#include<bits/stdc++.h>
#define N 500002
using namespace std;
typedef long long ll;
const int maxd=60;
int q,n,fa[N];
double dp[N][61];
inline ll rd(){
ll x=0;char c=getchar();bool f=0;
while(!isdigit(c)){if(c=='-')f=1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
return f?-x:x;
}
int main(){
q=rd();
int type,x;
n=1;
for(int i=0;i<=maxd;++i)dp[1][i]=1;
while(q--){
type=rd();x=rd();
if(type==1){
++n;
for(int i=0;i<=maxd;++i)dp[n][i]=1;
fa[n]=x;
double pre=1;int s=n;
for(int dep=0,now=x;now&&dep<=60;dep++,now=fa[now]){
double nw=dp[now][dep];
dp[now][dep]/=0.5*(1+pre);
if(dep)dp[now][dep]*=0.5*(1+dp[s][dep-1]);
else dp[now][dep]*=0.5;
s=now;pre=nw;
}
}
else{
double ans=0;
for(int i=1;i<=60;++i)ans+=(dp[x][i]-dp[x][i-1])*i;
printf("%.10lf\n",ans);
}
}
return 0;
}

CF643E Bear and Destroying Subtrees的更多相关文章

  1. CF643E. Bear and Destroying Subtrees 期望dp

    题目链接 CF643E. Bear and Destroying Subtrees 题解 dp[i][j]表示以i为根的子树中,树高小于等于j的概率 转移就是dp[i][j] = 0.5 + 0.5 ...

  2. 笔记-CF643E Bear and Destroying Subtrees

    CF643E Bear and Destroying Subtrees 设 \(f_{i,j}\) 表示节点 \(i\) 的子树深度为 \(\le j\) 的概率,\(ch_i\) 表示 \(i\) ...

  3. [CF643E]Bear and Destroying Subtrees(期望,忽略误差)

    Description: ​ 给你一棵初始只有根为1的树 ​ 两种操作 ​ 1 x 表示加入一个新点以 x为父亲 ​ 2 x 表示以 x 为根的子树期望最深深度 ​ 每条边都有 \(\frac{1}{ ...

  4. CF 643 E. Bear and Destroying Subtrees

    E. Bear and Destroying Subtrees http://codeforces.com/problemset/problem/643/E 题意: Q个操作. 加点,在原来的树上加一 ...

  5. Codeforces.643E.Bear and Destroying Subtrees(DP 期望)

    题目链接 \(Description\) 有一棵树.Limak可以攻击树上的某棵子树,然后这棵子树上的每条边有\(\frac{1}{2}\)的概率消失.定义 若攻击以\(x\)为根的子树,高度\(ht ...

  6. [cf674E]Bear and Destroying Subtrees

    令$f_{i,j}$表示以$i$为根的子树中,深度小于等于$j$的概率,那么$ans_{i}=\sum_{j=1}^{dep}(f_{i,j}-f_{i,j-1})j$ 大约来估计一下$f_{i,j} ...

  7. 一句话题解&&总结

    CF79D Password: 差分.两点取反,本质是匹配!最短路+状压DP 取反是套路,匹配是发现可以把操作进行目的化和阶段化,从而第二次转化问题. 且匹配不会影响别的位置答案 sequence 计 ...

  8. Codeforces Round #318 [RussianCodeCup Thanks-Round] (Div. 1) B. Bear and Blocks 水题

    B. Bear and Blocks Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/573/pr ...

  9. 【32.89%】【codeforces 574D】Bear and Blocks

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

随机推荐

  1. TS学习笔记----(一)基础类型

    布尔值: boolean let isDone: boolean = false; 数字: number 和JavaScript一样,TS里的所有数字都是浮点数. 支持十进制和十六进制字面量,TS还支 ...

  2. 20191128 Spring Boot官方文档学习(9.11-9.17)

    9.11.消息传递 Spring Boot提供了许多包含消息传递的启动器.本部分回答了将消息与Spring Boot一起使用所引起的问题. 9.11.1.禁用事务JMS会话 如果您的JMS代理不支持事 ...

  3. if——while表达式详解

    ①while循环的表达式是循环进行的条件,用作循环条件的表达式中一般至少包括一个能够改变表达式的变量,这个变量称为循环变量 ②当表达式的值为真(非零)(非空)时,执行循环体:为假(0)时,则循环结束 ...

  4. springboot项目中使用maven resources

    maven resource 组件可以把pom的变量替换到相关的resouces目录中的资源文件变量 示例项目:内容中心 (文章管理)  生成jar包,生成docker ,生成k8s文件 1.项目结构 ...

  5. 码云与Git的使用

    码云注册和使用 网址:https://gitee.com 注册之后新建一个仓库 接下来安装Git 协同开发Git安装与使用 下载地址:https://gitforwindows.org 安装完成之后选 ...

  6. 求大组合数mod p,(p不一定为质数)

    #include<bits/stdc++.h> using namespace std; typedef long long ll; #define N 2000005 ll p; ll ...

  7. 2、Java调用C语言(JNative法)

    这个方法也是挺麻烦的…… 一.下载JNative.jar,把它放在你jdk下的\jre\lib\ext目录下 二.在 F:\MinGW\JNative 新建 Test.java: public cla ...

  8. IO同步阻塞与同步非阻塞

    BIO.NIO.AIO IO(BIO)和NIO区别:其本质就是阻塞和非阻塞的区别 阻塞概念:应用程序在获取网络数据的时候,如果网络传输数据很慢,就会一直等待,直到传输完毕为止. 非阻塞概念:应用程序直 ...

  9. setTimeout、Promise、Async/Await 的执行顺序

    问题描述:以下这段代码的执行结果 async function async1() { console.log('async1 start'); await async2(); console.log( ...

  10. JavaEE高级-Maven学习笔记

    Maven简介 1.Maven是一款服务于Java平台的自动化构建工具. 2.构建: - 概念:以“Java源文件”.“框架配置文件”.“JSP”.“HTML”.“图片”等资源为“原料”,去“生产”一 ...