BZOJ 2597: [Wc2007]剪刀石头布(费用流)
解题思路
考虑全集-不能构成三元环的个数。如果三个点不能构成三元环,一定有一个点的入度为\(2\),继续扩展,如果一个点的度数为\(3\),则会失去3个三元环。对于一个点来说,它所产生的不能构成三元环的贡献为\(C (deg[x],2)\),而度数每增加\(1\),对于答案的影响就是\(C(deg[x]+1,2)-C(deg[x],2)=deg[x]\),然后就可以建图了。考虑把边当做点,对于一条未确定的边来说,它只能对两个节点中的一个产生\(1\)个度数的贡献,所以让每个边向点连流量为1,费用为0的边。然后让源点向每条未确定的边连流量为1,费用为0的边。再让每个点向汇点连流量为\(1\),费用为\(deg[x],deg[x]+1,deg[x]+2,...n\)的边。跑一遍费用流。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<queue>
using namespace std;
const int MAXN = 100005;
const int MAXM = 500005;
const int inf = 0x3f3f3f3f;
inline int rd(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
}
int n,head[MAXN],cnt=1,to[MAXM<<1],nxt[MAXM<<1],val[MAXM<<1],cost[MAXM<<1];
int deg[MAXN],num,S,T,op[105][105],dis[MAXN],incf[MAXN],pre[MAXN],ans,tmp[105][105];
bool vis[MAXN];
queue<int> Q;
inline void add(int bg,int ed,int w,int z){
to[++cnt]=ed,nxt[cnt]=head[bg],val[cnt]=w,cost[cnt]=z,head[bg]=cnt;
}
bool spfa(){
while(Q.size()) Q.pop();
memset(dis,0x3f,sizeof(dis));
memset(vis,false,sizeof(vis));
Q.push(S);vis[S]=1;incf[S]=inf;dis[S]=0;
while(Q.size()){
int x=Q.front();Q.pop();vis[x]=0;
for(int i=head[x];i;i=nxt[i]){
int u=to[i];
if(dis[x]+cost[i]<dis[u] && val[i]){
dis[u]=dis[x]+cost[i];
incf[u]=min(incf[x],val[i]);
pre[u]=i;
if(!vis[u]) vis[u]=1,Q.push(u);
}
}
}
return (dis[T]==inf)?0:1;
}
inline void update(){
int x=T,i;
while(x!=S){
i=pre[x];
val[i]-=incf[T];
val[i^1]+=incf[T];
x=to[i^1];
}
ans-=incf[T]*dis[T];
}
int main(){
n=rd();int x;T=n+2;S=n+1;num=T;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
x=rd();op[i][j]=x;
if(x==1) deg[i]++;
}
for(int i=1;i<=n;i++) if(deg[i]>1) ans-=deg[i]*(deg[i]-1)/2;
for(int i=1;i<=n;i++)
for(int j=deg[i];j<=n;j++)
add(i,T,1,j),add(T,i,0,-j);
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
if(op[i][j]==2){
num++;add(S,num,1,0);add(num,S,0,0);
add(num,i,1,0),add(i,num,0,0);
add(num,j,1,0),add(j,num,0,0);
tmp[i][j]=tmp[j][i]=num;
}
while(spfa()) update();
ans+=n*(n-1)*(n-2)/6;
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
if(op[i][j]==2){
for(int k=head[tmp[i][j]];k;k=nxt[k]){
if(to[k]==S) continue;
if(!val[k]) {
if(to[k]==i) op[i][j]=1,op[j][i]=0;
else op[j][i]=1,op[i][j]=0;
}
}
}
printf("%d\n",ans);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++)
printf("%d ",op[i][j]);
putchar('\n');
}
return 0;
}
BZOJ 2597: [Wc2007]剪刀石头布(费用流)的更多相关文章
- BZOJ.2597.[WC2007]剪刀石头布(费用流zkw)
BZOJ 洛谷 \(Description\) 给定一张部分边方向已确定的竞赛图.你需要给剩下的边确定方向,使得图中的三元环数量最多. \(n\leq100\). \(Solution\) 这种选择之 ...
- bzoj 2597 [Wc2007]剪刀石头布——费用流
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2597 三个人之间的关系,除了“剪刀石头布”,就是有一个人赢了2局:所以考虑算补集,则每个人对 ...
- bzoj 2597: [Wc2007]剪刀石头布【最小费用最大流】
脑子不太清楚一个zz问题调了好久-- 首先正难则反,因为三元环好像没什么特点,就考虑让非三元环个数最小 考虑非三元环特点,就是环上一定有一个点的入度为2,联系整张图,三元环个数就是每个点C(入度,2) ...
- [WC2007]剪刀石头布——费用流
比较有思维含量的一道题 题意:给混合完全图定向(定向为竞赛图)使得有最多的三元环 三元环条件要求比较高,还不容易分开处理. 正难则反 考虑,什么情况下,三元组不是三元环 一定是一个点有2个入度,一个点 ...
- 2597: [Wc2007]剪刀石头布
2597: [Wc2007]剪刀石头布 链接 分析: 费用流. 首先转化一下问题,整张图最优的情况是存在$C_n^3$个,即任意3个都行,然后考虑去掉最少不满足的三元环. 如果u赢了v,u向v连一条边 ...
- [bzoj 1449] 球队收益(费用流)
[bzoj 1449] 球队收益(费用流) Description Input Output 一个整数表示联盟里所有球队收益之和的最小值. Sample Input 3 3 1 0 2 1 1 1 1 ...
- bzoj 1070: [SCOI2007]修车 费用流
1070: [SCOI2007]修车 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2785 Solved: 1110[Submit][Status] ...
- Luogu4249 WC2007 石头剪刀布 费用流
传送门 考虑竞赛图三元环计数,设第\(i\)个点的入度为\(d_i\),根据容斥,答案为\(C_n^3 - \sum C_{d_i}^2\) 所以我们需要最小化\(\sum C_{d_i}^2\) 考 ...
- BZOJ 3171 循环格(费用流)
题意 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c),你可以沿着箭头防线在格子间行走.即如果(r ...
随机推荐
- bzoj 2435
http://www.lydsy.com/JudgeOnline/problem.php?id=2435 noi 你为什么那么diao, 这种世纪水题刷一道少一道啊... 我原来还以为是两边的联通块大 ...
- hdu1574 I Hate It (线段树,查询区间最大值)
Description 很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少. 这让很多学生很反感. 不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模拟 ...
- SLA(服务等级协议)
SLA:Service-Level Agreement的缩写,意思是服务等级协议.是关于网络服务供应商和客户间的一份合同,其中定义了服务类型.服务质量和客户付款等术语. 定义SLA:Service-L ...
- 服务器一般达到多少QPS比较好?
每秒查询率QPS是对一个特定的查询服务器在规定时间内所处理流量多少的衡量标准,在因特网上,作为域名系统服务器的机器的性能经常用每秒查询率来衡量. 原理:每天80%的访问集中在20%的时间里,这20%时 ...
- 探索Redis设计与实现12:浅析Redis主从复制
本文转自互联网 本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查看 https://github.com/h2pl/Java-Tutorial ...
- HTML5: HTML5 内联 SVG
ylbtech-HTML5: HTML5 内联 SVG 1.返回顶部 1. HTML5 内联 SVG HTML5 支持内联 SVG. 什么是SVG? SVG 指可伸缩矢量图形 (Scalable Ve ...
- 89、tensorflow使用GPU并行计算
''' Created on May 25, 2017 @author: p0079482 ''' # 分布式深度学习模型训练模式 # 在一台机器的多个GPU上并行训练深度学习模型 from date ...
- POJ3641 Pseudoprime numbers (幂取模板子)
给你两个数字p,a.如果p是素数,并且ap mod p = a,输出“yes”,否则输出“no”. 很简单的板子题.核心算法是幂取模(算法详见<算法竞赛入门经典>315页). 幂取模板子: ...
- 洛谷 P2024 [NOI2001]食物链——带权值的并查集维护
先上一波题目 https://www.luogu.org/problem/P2024 通过这道题复习了一波并查集,学习了一波带权值操作 首先我们观察到 所有的环都是以A->B->C-> ...
- Linux文件数据类型
文件的元数据信息及其含义 查看方式 stat file 例如: 修改文件的时间戳 touch 命令格式: touch [ OPTION ] ... FILE ... 例如: touch aaa.tx ...