Codeforces Round #460 (Div. 2) B Perfect Number(二分+数位dp)
2 seconds
256 megabytes
standard input
standard output
We consider a positive integer perfect, if and only if the sum of its digits is exactly 1010. Given a positive integer kk, your task is to find the kk-th smallest perfect positive integer.
A single line with a positive integer kk (1≤k≤100001≤k≤10000).
A single number, denoting the kk-th smallest perfect integer.
1
19
2
28
The first perfect integer is 1919 and the second one is 2828.
题意:求出第k个各位数和为10的数
题解:本题k的范围比较小,所以暴力可以解决
但是当范围大的时候,就要用数位dp了
数位dp记录的是小于某个数的符合条件的数有多少个
用二分去枚举
代码:
#include<iostream>
#include<string.h>
#include<algorithm>
#include<stdio.h>
#include<queue>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long long ll;
typedef pair<int,int> PII;
#define mod 1000000007
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
//head
int k;
ll a[];
bool check(ll x)
{
ll ans=;
while(x){
ans+=x%;
x/=;
}
return ans==;
}
int main()
{
scanf("%d",&k);
int p=;
for(int i=;i<;i++)
{
if(check(i))
{
a[++p]=i;
}
}
printf("%lld\n",a[k]);
return ;
}
枚举 873 ms 300 KB
#include<bits/stdc++.h>
using namespace std;
int k;
bool check(int x)
{
int ans=;
while(x){
ans+=x%;
x/=;
}
return ans==;
}
int main()
{
scanf("%d",&k);
int p=;
for(int i=;i<;i++)
{
if(check(i))
{
p++;
if(p==k)
{
printf("%d\n",i);
}
}
} return ;
}
枚举 140 ms 0 KB
#include<iostream>
#include<string.h>
#include<algorithm>
#include<stdio.h>
#include<queue>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long long ll;
typedef pair<int,int> PII;
#define mod 1000000007
#define INF 0x3f3f3f3f
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
//head
int k;
int bit[];
int dp[][];//表示到第i位,数位和为j的个数
int dfs(int pos,int sum,bool limit)
{
if(pos==-) return sum==;
if(sum>)return ;
if(!limit&&dp[pos][sum]!=-)return dp[pos][sum];
int ans=;
int up=limit?bit[pos]:;
for(int i=;i<=up;i++)
{
ans+=dfs(pos-,sum+i,limit&&(i==up));
}
if(!limit) dp[pos][sum]=ans;
return ans;
}
int calc(int x)
{
int len=;
while(x)
{
bit[len++]=x%;
x/=;
}
return dfs(len-,,true);
}
int main()
{
memset(dp,-,sizeof(dp));
while(~scanf("%d",&k))
{
int lb=,ub=INF;
int ans=;
while(ub-lb>){
int mid=(lb+ub)/;
if(calc(mid)<k) lb=mid;
else ans=mid,ub=mid;
}
printf("%d\n",ans);
} return ;
}
二分+数位dp 31 ms 0 KB
Codeforces Round #460 (Div. 2) B Perfect Number(二分+数位dp)的更多相关文章
- Codeforces Round #460 (Div. 2)-B. Perfect Number
B. Perfect Number time limit per test2 seconds memory limit per test256 megabytes Problem Descriptio ...
- Codeforces Round #287 (Div. 2) D. The Maths Lecture [数位dp]
传送门 D. The Maths Lecture time limit per test 1 second memory limit per test 256 megabytes input stan ...
- Codeforces Round #585 (Div. 2) B. The Number of Products(DP)
链接: https://codeforces.com/contest/1215/problem/B 题意: You are given a sequence a1,a2,-,an consisting ...
- Codeforces Round #608 (Div. 2) E - Common Number (二分 思维 树结构)
- Codeforces Round #608 (Div. 2) E. Common Number (二分,构造)
题意:对于一个数\(x\),有函数\(f(x)\),如果它是偶数,则\(x/=2\),否则\(x-=1\),不断重复这个过程,直到\(x-1\),我们记\(x\)到\(1\)的这个过程为\(path( ...
- Codeforces Round #267 (Div. 2) C. George and Job(DP)补题
Codeforces Round #267 (Div. 2) C. George and Job题目链接请点击~ The new ITone 6 has been released recently ...
- Codeforces Round #460 (Div. 2)
A. Supermarket We often go to supermarkets to buy some fruits or vegetables, and on the tag there pr ...
- [Codeforces]Codeforces Round #460 (Div. 2)
Supermarket 找最便宜的就行 Solution Perfect Number 暴力做 Solution Seat Arrangement 注意当k=1时,横着和竖着是同一种方案 Soluti ...
- 【Codeforces Round #460 (Div. 2) B】 Perfect Number
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 直接暴力求出第k个perfect数字就好. 纯模拟. [代码] #include <bits/stdc++.h> #de ...
随机推荐
- Linux-安装python3环境
Linux-安装python3环境 [root@node1 ~]# yum -y groupinstall "Development tools" [root@node1 ~]# ...
- Kubernetes部署DNS
前言 阅读地址 http://thoreauz.com/2017/04/16/docker/Kubernetes%E9%83%A8%E7%BD%B2DNS%E5%92%8CDashboard/ Kub ...
- eclipse没有Web项目和Server选项
(1)在Eclipse中菜单help选项中选择install new software选项 (2)在work with 栏中输入 http://download.eclipse.org/release ...
- AOP切面详解
一.spring-aop.xml文件 <?xml version="1.0" encoding="UTF-8"?> <beans xmlns= ...
- Redis分布式锁【正确实现方式】
前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介 ...
- 补比赛——牛客OI周赛9-普及组
比赛地址 A 小Q想撸串 题目分析 普及T1水题惯例.字符串中找子串. Code #include<algorithm> #include<iostream> #include ...
- [sql 注入] 注入类型
基于整型的注入: url:http://localhost/?id=12 拼接sql:$sql = "select * from user where id = {$_GET['id']}& ...
- LOJ2540「PKUWC2018」随机算法
又是一道被咕了很久的题 貌似从WC2019之前咕到了现在 我们用f[i][s]表示现在最大独立集的大小为i 不可选集合为s 然后转移O(n)枚举加进来的点就比较简单啦 这个的复杂度是O(2^n*n^2 ...
- 第五周作业—N42-虚怀若谷
一.查找/etc目录下大于1M且类型为普通文件的所有文件 [root@centos7 ~]# find /etc -type f -size +1M -exec ls -lh {} \; -r--r- ...
- P2627 修剪草坪 (单调队列优化$dp$)
题目链接 Solution 70分很简单的DP,复杂度 O(NK). 方程如下: \[f[i][1]=max(f[j][0]+sum[i]-sum[j])\]\[f[i][0]=max(f[i-1][ ...