问题:

爬n阶楼梯,每次只能走1阶或者2阶,计算有多少种走法。

暴力计算+记忆化递归。

从位置 i 出发,每次走1阶或者2阶台阶,记录从位置 i 出发到目标 n 所有的走法数量,memoA[i] 。记录的数据可以重复使用,避免冗余计算。

时间复杂度:O(n)。每次计算从 i 位置出发到终点 n 的走法,共计算 n 次,即树形递归的大小为n。

空间复杂度:O(n)。使用了长度为 n 的数组。

clock_t start1, end1;

class Solution {
public:
int climbStairs(int n) { int memo[n+] = {}; start1 = clock();
int result = climb_stairs(, n, memo);
end1 = clock(); cout << "cost time = " << (double)(end1 - start1) / CLOCKS_PER_SEC << endl; return result;
} int climb_stairs(int i, int nums, int memoA[]) { if (i > nums)
return ; if (i == nums)
return ; if (memoA[i] > )
return memoA[i]; memoA[i] = climb_stairs(i+, nums, memoA) + climb_stairs(i+, nums, memoA); return memoA[i];
}
};

动态规划

动态规划的关键步骤在于构建递归函数。由于第n级阶梯可由第n-1级(跨一步)和第n-2级(跨两步)到达。记 f(n) 为到达第n级阶梯的方案数量,则有递归函数 f(n) = f(n-1)+f(n-2).

1)动态规划第一种实现方法:

时间复杂度:O(2^n)。其运算过程就是一个完全二叉树的展开,共有 2^(n-2)+1 个节点,即递归运算了 2^(n-2)+1 次。

空间复杂度:O(n)。递归深度达到n层。

class Solution {
public:
int climbStairs(int n) {
if (n == )
return ;
if (n == )
return ; int sumMethod = climbStairs(n-) + climbStairs(n-); return sumMethod;
}
};

2)动态规划第二种实现方法:

时间复杂度:O(n)

空间复杂度:O(n)

class Solution {
public:
int climbStairs(int n) {
if (n == )
return ; int memo[n+] = {};
memo[] = ;
memo[] = ; for(int i = ; i <= n; ++i) {
memo[i] = memo[i-] + memo[i-];
} return memo[n];
}
};

斐波那契数

将动态规划的第二种实现方法进行修改。第一项为1,第二项为2,斐波那契数的计算公式如下:

fib(n) = fib(n-1)+fib(n-2)。

时间复杂度:O(n)

空间复杂度:O(1)

还存在时间复杂度为 O(log(n))算法,其核心思想为直接找到第n个斐波那契数,而非进行遍历计算。

这就是算法的魅力。从暴力求解开始,逐步优化算法流程,砍掉冗余的计算步骤,尽可能去除遍历步骤。最终达到提升时间复杂度和空间复杂度的目的。

【Leetcode】爬楼梯的更多相关文章

  1. 70.LeetCode爬楼梯

    爬楼梯 点击标题可跳转到官网进行查看 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: ...

  2. 水leetcode 爬楼梯

    public class Solution { public int climbStairs(int n) { if(n==1) return 1; if(n==2) return 2; int pr ...

  3. LeetCode初级算法--动态规划01:爬楼梯

    LeetCode初级算法--动态规划01:爬楼梯 搜索微信公众号:'AI-ming3526'或者'计算机视觉这件小事' 获取更多算法.机器学习干货 csdn:https://blog.csdn.net ...

  4. 【LeetCode】746. 使用最小花费爬楼梯

    使用最小花费爬楼梯 数组的每个索引做为一个阶梯,第 i个阶梯对应着一个非负数的体力花费值 cost[i](索引从0开始). 每当你爬上一个阶梯你都要花费对应的体力花费值,然后你可以选择继续爬一个阶梯或 ...

  5. [LeetCode] 70. Climbing Stairs 爬楼梯问题

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  6. LeetCode 70. 爬楼梯(Climbing Stairs)

    70. 爬楼梯 70. Climbing Stairs 题目描述 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意: 给定 ...

  7. LeetCode 746. 使用最小花费爬楼梯(Min Cost Climbing Stairs) 11

    746. 使用最小花费爬楼梯 746. Min Cost Climbing Stairs 题目描述 数组的每个索引做为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i].(索引从 0 ...

  8. Leetcode之动态规划(DP)专题-746. 使用最小花费爬楼梯(Min Cost Climbing Stairs)

    Leetcode之动态规划(DP)专题-746. 使用最小花费爬楼梯(Min Cost Climbing Stairs) 数组的每个索引做为一个阶梯,第 i个阶梯对应着一个非负数的体力花费值 cost ...

  9. Leetcode#70. Climbing Stairs(爬楼梯)

    题目描述 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解 ...

  10. LeetCode 70 - 爬楼梯 - [递推+滚动优化]

    假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2输出: 2解释: 有两种方 ...

随机推荐

  1. HDU 1029 Ignatius and the Princess IV (动态规划、思维)

    Ignatius and the Princess IV Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32767 K ( ...

  2. 【Linux 网络编程】常用套接字类型

    常用套接字类型<1>流式套接字(SOCK_STREAM)---TCP      提供面向连接的.可靠的传输服务,数据无差错,无重复的发送,      且按发送顺序接收.<2>数 ...

  3. 【转】mysql卸载(windows)

    作者:cxy_Summer 来源:CSDN 原文:https://blog.csdn.net/cxy_Summer/article/details/70142322 版权声明:本文为博主原创文章,转载 ...

  4. Vue 子组件,向父组件传递。

  5. python之网络部分

    1.C/S B/S架构 C: client端 B: browse 浏览器 S: server端 C/S架构: 基于客户端与服务端之间的通信 ​ QQ, 游戏,皮皮虾, 快手,抖音. ​ 优点: 个性化 ...

  6. 在html中展示pdf

    pc端 插件: https://pdfobject.com/ 使用: <!doctype html> <html lang="en"> <head&g ...

  7. mpvue开发微信小程序之picker

    微信使用picker组件,bingchange 换成@change即可使用监听函数和方法 此处注意与微信多了一个mp的信息才能获取到选中的值. 获取当前日期+时间 function formatTim ...

  8. $id(id)函数

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  9. 在docker容器中为elasticsearch配置跨域访问

    一.在docker容器中进入elasticsearch对应的容器 docker exec -it [容器名] /bin/bash 二.安装vim编辑器 因为我们需要更改配置文件,安装过的朋友就不用安装 ...

  10. cobbler装机系统部署

    1.cobbler安装 [root@linux-node1 ~]# cp /etc/cobbler/settings{,.ori} # 备份 # server,Cobbler服务器的IP. sed - ...