Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many lattice points are visible from corner at (0,0,0) ?

A point X is visible from point Y iff no other lattice point lies on the segment joining X and Y. 
Input : 
The first line contains the number of test cases T. The next T lines contain an interger N 
Output : 
Output T lines, one corresponding to each test case. 
Sample Input : 




 
Sample Output : 

19 
175 
Constraints : 
T <= 50 
1 <= N <= 1000000

题意就是给你一个三维的地图,坐标为(0,0,0)∼(n,n,n),判断有多少个坐标与原点之间的连线不经过其他的点。

思路:统计答案的点分为三类

1.坐标轴上的点(1,0,0)(0,1,0)(0,0,1) 三个

2.xoy,xoz,xoy面上的点gcd(i,j)==1; 二维很简单

3.其他点 gcd(i,j,k)==1

    

代码如下:

 #include <bits/stdc++.h>

 using namespace std;
typedef long long ll;
const int maxn = +;
int p[maxn],mo[maxn],phi[maxn],cnt=;
bool vis[maxn];
void init()
{
mo[]=;
phi[]=;
for(int i=;i<=maxn-;i++){
if(!vis[i]){
mo[i]=-;
phi[i]=i-;
p[cnt++]=i;
}
for(int j=;j<cnt&&(ll)i*p[j]<=maxn-;j++){
vis[i*p[j]]=true;
if(i%p[j]==){
mo[i*p[j]]=;
phi[i*p[j]]=phi[i]*p[j];
break;
}
mo[i*p[j]]=-mo[i];
phi[i*p[j]]=phi[i]*(p[j]-);
}
}
}
int n;
int main()
{
//freopen("de.txt","r",stdin);
init();
int T;
scanf("%d",&T);
while (T--){
scanf("%d",&n);
ll ans = ;
for (int i=;i<=n;++i){
ans+=(ll)mo[i]*(n/i)*(n/i)*(n/i);
}
for (int i=;i<=n;++i){
ans+=(ll)mo[i]*(n/i)*(n/i)*;
}
printf("%lld\n",ans+);
}
return ;
}

SPOJ - VLATTICE (莫比乌斯反演)的更多相关文章

  1. SPOJ PGCD(莫比乌斯反演)

    传送门:Primes in GCD Table 题意:给定两个数和,其中,,求为质数的有多少对?其中和的范围是. 分析:这题不能枚举质数来进行莫比乌斯反演,得预处理出∑υ(n/p)(n%p==0). ...

  2. bzoj 2820 / SPOJ PGCD 莫比乌斯反演

    那啥bzoj2818也是一样的,突然想起来好像拿来当周赛的练习题过,用欧拉函数写掉的. 求$(i,j)=prime$对数 \begin{eqnarray*}\sum_{i=1}^{n}\sum_{j= ...

  3. SPOJ 7001(莫比乌斯反演)

    传送门:Visible Lattice Points 题意:0<=x,y,z<=n,求有多少对xyz满足gcd(x,y,z)=1. 设f(d) = GCD(a,b,c) = d的种类数 : ...

  4. SPOJ 7001 VLATTICE - Visible Lattice Points(莫比乌斯反演)

    题目链接:http://www.spoj.com/problems/VLATTICE/ 题意:求gcd(a, b, c) = 1    a,b,c <=N 的对数. 思路:我们令函数g(x)为g ...

  5. SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演 难度:3

    http://www.spoj.com/problems/VLATTICE/ 明显,当gcd(x,y,z)=k,k!=1时,(x,y,z)被(x/k,y/k,z/k)遮挡,所以这道题要求的是gcd(x ...

  6. SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)

    Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at ...

  7. [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演

    7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...

  8. SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演

    这样的点分成三类 1 不含0,要求三个数的最大公约数为1 2 含一个0,两个非零数互质 3 含两个0,这样的数只有三个,可以讨论 针对 1情况 定义f[n]为所有满足三个数最大公约数为n的三元组数量 ...

  9. SPOJ VLATTICE Visible Lattice Points(莫比乌斯反演)题解

    题意: 有一个\(n*n*n\)的三维直角坐标空间,问从\((0,0,0)\)看能看到几个点. 思路: 按题意研究一下就会发现题目所求为. \[(\sum_{i=1}^n\sum_{j=1}^n\su ...

随机推荐

  1. SQL SERVER视图对查询效率的提高

    SQL SERVER视图不仅可以实现许多我们需要的功能,而且对于SQL SERVER查询效率的提高也有帮助,下面一起来了解一下. 有两张数据表:A和B,其中A的记录为2万条左右,而B中的数据为200万 ...

  2. webpack对icon-font图片的处理

    一.对图片的处理 安装url-loader 然后再loaderli配置这样会把图片打包成base64格式 { test: /\.(gif|png|jpg)\??.*$/, loader: 'url-l ...

  3. Flutter 中的基本路由

    Flutter 中的路由通俗的讲就是页面跳转.在 Flutter 中通过 Navigator 组件管理路由导航,并提供了管理堆栈的方法.如:Navigator.push 和 Navigator.pop ...

  4. [CSP-S模拟测试]:y(DP+bitset)

    题目背景 $\frac{1}{4}$遇到了一道水题,叕完全不会做,于是去请教小$D$.小$D$懒得理$\frac{1}{4}$,直接就离开了.于是,$\frac{1}{4}$只好来问你,这道题是这样的 ...

  5. PyQuery爬取历史天气信息

    1.准备工作: 网址:https://lishi.tianqi.com/xian/index.html 爬虫类库:PyQuery,requests 2.网页分析: 红线部分可更改为需要爬取的城市名,如 ...

  6. slideshare原本是一个专业的幻灯片存储与展示的网站

    slideshare就是其中一个.slideshare原本是一个专业的幻灯片存储与展示的网站,它支持扩展名为ppt.pps和odp三种格式的幻灯片,用户上传成功以后slideshare会提供给用户一个 ...

  7. laravel 中url使用

    url() 通过url辅助函数(路由)生成:location.href = "{{url('user/index')}}"; 或者:location.href = "{{ ...

  8. Python笔记(五)_内置函数BIF

    查看所有的内置函数:dir(__builtins__) abs()   获取绝对值 max()   返回给定元素中的最大值 min()   返回给定元素中的最小值 sum()   求和 reverse ...

  9. 还抱着 Java 8 不放,也是醉了!

    作者 | Trisha Gee原文:https://dzone.com/articles/beyond-java-8译者 | 弯月 责编 | 屠敏出品 | CSDN(ID:CSDNnews) 不说 A ...

  10. leetcode.双指针.524通过删除字母匹配到字典里最长单词-Java

    1. 具体题目 给定一个字符串和一个字符串字典,找到字典里面最长的字符串,该字符串可以通过删除给定字符串的某些字符来得到.如果答案不止一个,返回长度最长且字典顺序最小的字符串.如果答案不存在,则返回空 ...