Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many lattice points are visible from corner at (0,0,0) ?

A point X is visible from point Y iff no other lattice point lies on the segment joining X and Y. 
Input : 
The first line contains the number of test cases T. The next T lines contain an interger N 
Output : 
Output T lines, one corresponding to each test case. 
Sample Input : 




 
Sample Output : 

19 
175 
Constraints : 
T <= 50 
1 <= N <= 1000000

题意就是给你一个三维的地图,坐标为(0,0,0)∼(n,n,n),判断有多少个坐标与原点之间的连线不经过其他的点。

思路:统计答案的点分为三类

1.坐标轴上的点(1,0,0)(0,1,0)(0,0,1) 三个

2.xoy,xoz,xoy面上的点gcd(i,j)==1; 二维很简单

3.其他点 gcd(i,j,k)==1

    

代码如下:

 #include <bits/stdc++.h>

 using namespace std;
typedef long long ll;
const int maxn = +;
int p[maxn],mo[maxn],phi[maxn],cnt=;
bool vis[maxn];
void init()
{
mo[]=;
phi[]=;
for(int i=;i<=maxn-;i++){
if(!vis[i]){
mo[i]=-;
phi[i]=i-;
p[cnt++]=i;
}
for(int j=;j<cnt&&(ll)i*p[j]<=maxn-;j++){
vis[i*p[j]]=true;
if(i%p[j]==){
mo[i*p[j]]=;
phi[i*p[j]]=phi[i]*p[j];
break;
}
mo[i*p[j]]=-mo[i];
phi[i*p[j]]=phi[i]*(p[j]-);
}
}
}
int n;
int main()
{
//freopen("de.txt","r",stdin);
init();
int T;
scanf("%d",&T);
while (T--){
scanf("%d",&n);
ll ans = ;
for (int i=;i<=n;++i){
ans+=(ll)mo[i]*(n/i)*(n/i)*(n/i);
}
for (int i=;i<=n;++i){
ans+=(ll)mo[i]*(n/i)*(n/i)*;
}
printf("%lld\n",ans+);
}
return ;
}

SPOJ - VLATTICE (莫比乌斯反演)的更多相关文章

  1. SPOJ PGCD(莫比乌斯反演)

    传送门:Primes in GCD Table 题意:给定两个数和,其中,,求为质数的有多少对?其中和的范围是. 分析:这题不能枚举质数来进行莫比乌斯反演,得预处理出∑υ(n/p)(n%p==0). ...

  2. bzoj 2820 / SPOJ PGCD 莫比乌斯反演

    那啥bzoj2818也是一样的,突然想起来好像拿来当周赛的练习题过,用欧拉函数写掉的. 求$(i,j)=prime$对数 \begin{eqnarray*}\sum_{i=1}^{n}\sum_{j= ...

  3. SPOJ 7001(莫比乌斯反演)

    传送门:Visible Lattice Points 题意:0<=x,y,z<=n,求有多少对xyz满足gcd(x,y,z)=1. 设f(d) = GCD(a,b,c) = d的种类数 : ...

  4. SPOJ 7001 VLATTICE - Visible Lattice Points(莫比乌斯反演)

    题目链接:http://www.spoj.com/problems/VLATTICE/ 题意:求gcd(a, b, c) = 1    a,b,c <=N 的对数. 思路:我们令函数g(x)为g ...

  5. SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演 难度:3

    http://www.spoj.com/problems/VLATTICE/ 明显,当gcd(x,y,z)=k,k!=1时,(x,y,z)被(x/k,y/k,z/k)遮挡,所以这道题要求的是gcd(x ...

  6. SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)

    Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at ...

  7. [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演

    7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...

  8. SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演

    这样的点分成三类 1 不含0,要求三个数的最大公约数为1 2 含一个0,两个非零数互质 3 含两个0,这样的数只有三个,可以讨论 针对 1情况 定义f[n]为所有满足三个数最大公约数为n的三元组数量 ...

  9. SPOJ VLATTICE Visible Lattice Points(莫比乌斯反演)题解

    题意: 有一个\(n*n*n\)的三维直角坐标空间,问从\((0,0,0)\)看能看到几个点. 思路: 按题意研究一下就会发现题目所求为. \[(\sum_{i=1}^n\sum_{j=1}^n\su ...

随机推荐

  1. intellijidea查看git窗口

    version control null

  2. Houdni学习——【三】裂开的墙砖

    Houdni学习--[三]裂开的墙砖 Houdinisophoudinisop Houdni学习--[三]裂开的墙砖 一.OverView 一条从板块上裂开的纹路,并在一段距离后逐渐变细. sop 二 ...

  3. linux设备驱动第一篇:设备驱动程序简介

    首先,我们知道驱动是内核的一部分,那么驱动在内核中到底扮演了什么角色呢? 设备驱动程序在内核中的角色:他们是一个个独立的“黑盒子”,使某个特定的硬件响应一个定义良好的内部编程接口,这些接口完全隐藏了设 ...

  4. codeforces 584E Anton and Ira [想法题]

    题意简述: 给定一个$1$到$n(n<=2000)$的初始排列以及最终排列 我们每次可以选取位置为$i$和$j$的 并交换它们的位置 花费为$ |i-j| $ 求从初始状态变换到末状态所需最小花 ...

  5. (三)修改内核大小,适配目标板Nand flash分区配置

    一. 修改内核大小 1. 在你的配置文件下uboot/include/config/xxx.h 里面有一个宏定义 #define MTDPARTS_DEFAULT "mtdparts=jz2 ...

  6. 在windows下用脚手架搭建vue环境

    做了几个月vue项目,最近两个项目使用脚手架搭建的,确实用脚手架搭建方便了许多,想想以前自己手配的时候,确实是... 1.在这之前我是默认你已经使用过vue的,也默认你已经安装了node.js 2.接 ...

  7. Java执行static顺序

    1.定义: 1. Java中静态变量只能在类主体中定义,不能在方法中定义. 静态变量属于类所有而不属于方法. 2. 静态块:用static申明,JVM加载类时执行,仅执行一次       构造块:类中 ...

  8. 简单DP入门(二) 最长上升子序列及其优化

    最长上升子序列解决问题: 有N个数,求出它最长的上升子序列并输出长度. 在题里不会讲的这么直白,这个算法往往会与其他的算法混在一起使用. 在这篇文章中不会出现其他的例题,为了让大家更好的理解,我只会对 ...

  9. upc组队赛14 Bus stop【签到水】

    Bus Stop 题目描述 In a rural village in Thailand, there is a long, straight, road with houses scattered ...

  10. javascript 计算两个整数的百分比值

    ///计算两个整数的百分比值 function GetPercent(num, total) { num = parseFloat(num); total = parseFloat(total); i ...