题目:Training little cats

链接:http://poj.org/problem?id=3735

分析:

1)将操作用矩阵表示出来,然后快速幂优化。

2)初始矩阵:$ \left[ \begin{array}{ccccc} 1 & a_1 & a_2 & ... & a_n \end{array} \right] $

构造一个$ (n+1)*(n+1) $ 的单位矩阵T。

得花生:将第0行中得到花生的那一列赋为1.

$ \left[ \begin{array}{cccccc} 1 & 0 & ... & [1] & ... & 0 \\ 0 & 1 & ... & 0 & ... & 0 \\ ... & ... & ... & ... & ... & ... \\ 0 & 0 & ... & 0 & ... & 1 \end{array} \right] $

吃花生:将第得到花生的那一行那一列的元素赋为0;

$ \left[ \begin{array}{cccccc} 1 & 0 & ... & 0 & ... & 0 \\ 0 & 1 & ... & 0 & ... & 0 \\ ... & ... & ... & ... & ... & ... \\ 0 & 0 & ... & [0] & ... & 0 \\ ... & ... & ... & ... & ... & ... \\ 0 & 0 & ... & 0 & ... & 1 \end{array} \right] $

交换花生:就是交换两行,就是初等行变化。

$ \left[ \begin{array}{cccccc} 1 & 0 & ... & 0 & ... & 0 \\ ... & ... & ... & ... & ... & ... \\ ... & ... & 0 & ... & [1] & ... \\ ... & ... & ... & ... & ... & ... \\ ... & ... & [1] & ... & 0 & ... \\ ... & ... & ... & ... & ... & ... \\ 0 & 0 & ... & 0 & ... & 1 \end{array} \right] $

3)T不停累乘操作矩阵,最后得到这一组的组操作矩阵。

4)快速幂求T^n,然后第一行就是答案。

5)注意longlong,虽然只有$10^9$次组操作,但每组操作都是100个得花生,还都给一只猫,就爆int了。

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long LL;
struct Matrix{
int n;
LL a[][];
void init(int _n,int f,int p=,int pp=){
n=_n;
memset(a,,sizeof a);
if(f==-)return;
for(int i=;i<=n;++i)a[i][i]=;
if(f==)a[][p]=;
if(f==)a[p][p]=;
if(f==){
a[p][p]=a[pp][pp]=;
a[p][pp]=a[pp][p]=;
}
}
};
Matrix operator*(Matrix& A,Matrix& B){
Matrix C;C.init(A.n,-);
for(int k=,n=C.n;k<=n;++k)
for(int i=;i<=n;++i)if(A.a[i][k])
for(int j=;j<=n;++j)
C.a[i][j]+=A.a[i][k]*B.a[k][j];
return C;
}
Matrix operator^(Matrix A,int n){
Matrix Rt;Rt.init(A.n,);
for(;n;n>>=){
if(n&)Rt=Rt*A;
A=A*A;
}
return Rt;
}
int main(){
int n,m,k,p,pp;char ch[];
Matrix T,T1;
for(;scanf("%d%d%d",&n,&m,&k);){
if(n== && m== && k==)break;
T.init(n,);
for(int i=;i<=k;++i){
scanf("%s",ch);
switch(ch[]){
case 'g':scanf("%d",&p);T1.init(n,,p);break;
case 'e':scanf("%d",&p);T1.init(n,,p);break;
case 's':scanf("%d%d",&p,&pp);T1.init(n,,p,pp);
}
T=T*T1;
}
T=T^m;
for(int i=;i<=n;++i)printf("%lld ",T.a[][i]);
puts("");
}
return ;
}

6)可以直接把初始矩阵的效果叠加到T上面

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long LL;
struct Matrix{
int n;
LL a[][];
void init(int _n,int f){
n=_n;
memset(a,,sizeof a);
if(f==-)return;
for(int i=;i<=n;++i)a[i][i]=;
}
};
Matrix operator*(Matrix& A,Matrix& B){
Matrix C;C.init(A.n,-);
for(int k=,n=C.n;k<=n;++k)
for(int i=;i<=n;++i)if(A.a[i][k])
for(int j=;j<=n;++j)
C.a[i][j]+=A.a[i][k]*B.a[k][j];
return C;
}
Matrix operator^(Matrix A,int n){
Matrix Rt;Rt.init(A.n,);
for(;n;n>>=){
if(n&)Rt=Rt*A;
A=A*A;
}
return Rt;
}
int main(){
int n,m,k,p,pp;char ch[];
Matrix T;
for(;scanf("%d%d%d",&n,&m,&k);){
if(n== && m== && k==)break;
T.init(n,);
for(int i=;i<=k;++i){
scanf("%s",ch);
switch(ch[]){
case 'g':scanf("%d",&p);++T.a[][p];break;
case 'e':scanf("%d",&p);
for(int i=;i<=n;++i)T.a[i][p]=;
break;
case 's':scanf("%d%d",&p,&pp);
for(int i=;i<=n;++i)swap(T.a[i][p],T.a[i][pp]);
}
}
T=T^m;
for(int i=;i<=n;++i)printf("%lld ",T.a[][i]);
puts("");
}
return ;
}

[POJ3735]Training little cats的更多相关文章

  1. xiaowuga poj3735—Training little cats(特殊操作转化为矩阵操作)

    题意:有n只猫,对其进行k次操作,然后反复这样操作m次. 其中g 表示 i 猫加1, e表示 i 猫为0:s表示  i 与 j 猫互换. 解释一下样例: 3 1 6g 1g 2g 2s 1 2g 3e ...

  2. poj3735—Training little cats(特殊操作转化为矩阵操作)

    题目链接:http://poj.org/problem?id=3735 题目意思: 调教猫咪:有n只饥渴的猫咪,现有一组羞耻连续操作,由k个操作组成,全部选自: 1. g i 给第i只猫咪一颗花生 2 ...

  3. Training little cats poj3735

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9299   Accepted: 2 ...

  4. Training little cats(poj3735,矩阵快速幂)

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10737   Accepted:  ...

  5. [poj3735] Training little cats_矩乘快速幂

    Training little cats poj-3735 题目大意:给你n个数,k个操作,将所有操作重复m次. 注释:三种操作,将第i个盒子+1,交换两个盒子中的个数,将一个盒子清空.$1\le m ...

  6. 矩阵快速幂 POJ 3735 Training little cats

    题目传送门 /* 题意:k次操作,g:i猫+1, e:i猫eat,s:swap 矩阵快速幂:写个转置矩阵,将k次操作写在第0行,定义A = {1,0, 0, 0...}除了第一个外其他是猫的初始值 自 ...

  7. [POJ 3735] Training little cats (结构矩阵、矩阵高速功率)

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9613   Accepted: 2 ...

  8. POJ 3735 Training little cats<矩阵快速幂/稀疏矩阵的优化>

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13488   Accepted:  ...

  9. POJ 3735 Training little cats(矩阵快速幂)

    Training little cats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11787 Accepted: 2892 ...

随机推荐

  1. jenkins持续集成、插件以及凭据

    Jenkins介绍 Jenkins是一个开源软件项目,是基于Java开发的一种持续集成工具,用于监控持续重复的工作,旨在提供一个开放易用的软件平台,使软件的持续集成变成可能. Jenkins功能包括: ...

  2. 经常用到的meta标签的整理

    1.设置页面关键词<meta name="keywords" content="输入具体的关键词">2.设置页面的描述<meta name=& ...

  3. CSS学习笔记1:字体样式属性

    CSS初识 成叠样式表,主要用于设置html页面的外观 产生原因:为了解决混乱的结构和样式,使结构和样式相分离. CSS注释 /*这是CSS注释*/ CSS样式规则 1.选择器用于指定css样式作用的 ...

  4. Python笔记(十八)_私有属性、实例属性、类属性

    私有属性 如果要让内部属性不被外部访问,可以把属性的名称前加上两个下划线__,就变成了一个私有属性,只有内部可以访问,外部不能直接访问或修改. 这样就确保了外部代码不能随意修改对象内部的状态,这样通过 ...

  5. HDU 6583 Typewriter 题解

    ——本题来自杭电多校第一场 题意:给定一个字符串,主角需要用打字机将字符串打出来,每次可以: 1.花费p来打出任意一个字符 2.花费q来将已经打出的某一段(子串)复制到后面去 对于这种最优化的问题,我 ...

  6. MapReduce(2): How does Mapper work

    In the previous post, we've illustrated how Hadoop MapReduce prepares input for Mappers. Long story ...

  7. 应用安全-Web安全-漏洞修复方案整理

    通过HTTP头部字段防御措施整理 X-Frame-Options #反劫持 X-XSS-Protection #开启浏览器防XSS功能 Set X-Frame-Options  CSP X-Conte ...

  8. Unable to load dynamic library 'zip.so' on Centos 6.8 useing php7.3

    背景: Centos6.8服务器升级php版本,从7.1升级到7.3,常用扩展都安装完成之后,报:Class 'ZipArchive' not found.一看就是zip扩展没有,需要手动安装了. 中 ...

  9. centos下Linux C语言MD5的使用

    在Linux C变成中用到MD5加密会使用到openssl库,下面给出的是一个简单的小Demo: #include <stdio.h> #include <openssl/md5.h ...

  10. python学习第一天变量命名规范和变量作用

    变量的命名 python中的变量跟其他编程语言变量一样 1,由字母,下划线,数字组成 2,数字不能做变量名开头 3,变量名尽量有意义和短,,也可以驼峰,不要很low ,比如说是 中文,变量名很长 py ...