传送门

解题思路

  \(trie\)的一个比较经典的应用,首先把每个点到根的异或和算出,然后建一棵\(trie\)把所有权值插入到\(Trie\)中,之后枚举所有结点,在\(Trie\)上贪心的跑统计答案,时间复杂度\(O(nlogn)\)

代码

#include<iostream>
#include<cstdio>
#include<cstring> using namespace std;
const int N=100005; inline int rd(){
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
} int n,head[N],cnt,to[N<<1],nxt[N<<1],val[N<<1];
int tot,ans,res,w[N],rt; struct Trie{
int ch[N*40][2];
void insert(int &x,int d,int now){
if(!x) x=++tot; if(!d) return;
if((1<<(d-1))&now) insert(ch[x][1],d-1,now);
else insert(ch[x][0],d-1,now);
}
void query(int x,int d,int now){
if(!d) return;
if((1<<(d-1))&now) {
if(ch[x][0]) res|=(1<<(d-1)),query(ch[x][0],d-1,now);
else query(ch[x][1],d-1,now);
}
else {
if(ch[x][1]) res|=(1<<(d-1)),query(ch[x][1],d-1,now);
else query(ch[x][0],d-1,now);
}
}
}tree; inline void add(int bg,int ed,int w){
to[++cnt]=ed,nxt[cnt]=head[bg],val[cnt]=w,head[bg]=cnt;
} void dfs(int x,int F){
for(int i=head[x];i;i=nxt[i]){
int u=to[i]; if(u==F) continue;
w[to[i]]=(w[x]^val[i]); dfs(u,x);
}
} int main(){
n=rd(); int x,y,z;
for(int i=1;i<n;i++){
x=rd(),y=rd(),z=rd();
add(x,y,z),add(y,x,z);
}
dfs(1,0);
for(int i=1;i<=n;i++) tree.insert(rt,31,w[i]);
for(int i=1;i<=n;i++)
res=0,tree.query(rt,31,w[i]),ans=max(ans,res);
printf("%d\n",ans);
return 0;
}

BZOJ 1954: Pku3764 The xor-longest Path(贪心+trie)的更多相关文章

  1. 题解 bzoj1954【Pku3764 The xor – longest Path】

    做该题之前,至少要先会做这道题. 记 \(d[u]\) 表示 \(1\) 到 \(u\) 简单路径的异或和,该数组可以通过一次遍历求得. \(~\) 考虑 \(u\) 到 \(v\) 简单路径的异或和 ...

  2. bzoj 1954 & poj 3764 The xor-longest Path dfs+Trie

    题目大意 给定一棵n个点的带权树,求树上最长的异或和路径 题解 因为\(xor\)操作满足可结合性,所以有 \(a\text{ }xor\text{ }b\text{ }xor\text{ }b = ...

  3. poj3764 The XOR Longest Path【dfs】【Trie树】

    The xor-longest Path Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10038   Accepted:  ...

  4. Solve Longest Path Problem in linear time

    We know that the longest path problem for general case belongs to the NP-hard category, so there is ...

  5. Why longest path problem doesn't have optimal substructure?

    We all know that the shortest path problem has optimal substructure. The reasoning is like below: Su ...

  6. 「LOJ#10056」「一本通 2.3 练习 5」The XOR-longest Path (Trie

    #10056. 「一本通 2.3 练习 5」The XOR-longest Path 题目描述 原题来自:POJ 3764 给定一棵 nnn 个点的带权树,求树上最长的异或和路径. 输入格式 第一行一 ...

  7. 51nod1295 XOR key(可持久化trie)

    1295 XOR key题目来源: HackerRank基准时间限制:1.5 秒 空间限制:262144 KB 分值: 160 难度:6级算法题 给出一个长度为N的正整数数组A,再给出Q个查询,每个查 ...

  8. [多校联考2019(Round 4 T1)][51nod 1295]Xor key(可持久化trie)

    [51nod 1295]Xor key(可持久化trie) 题面 给出一个长度为n的正整数数组A,再给出Q个查询,每个查询包括3个数,L, R, X (L <= R).求A[L] 至 A[R] ...

  9. 【BZOJ】1954: Pku3764 The xor-longest Path

    [算法]trie树+xor路径 [题解] 套路1:统计从根到每个点的xor路径和,由于xor的自反性,两个点到根的xor路径和异或起来就得到两点间路径和. 然后问题就是找到n个值中异或值最大的两个值, ...

随机推荐

  1. jmeter之线程组循环次数

    有时候压测需要配置并发的持续时间,这个可以在jmeter中线程组页面进行配置 1.jmeter的循环次数2种使用场景 2.持续时间功能介绍 3.持续时间的使用场景 1.jmeter的循环次数2种使用模 ...

  2. Gogs 安装 - 本地安装,容器安装

    文章目录 安装 Gogs 本地安装 前提条件: 数据库 git 创建 git 用户 SSH 服务器 安装 升级 配置及运行 配置 运行 Gogs 服务 在线安装 Gogs 后台运行 gogs 通过 d ...

  3. 深入浅出WPF(Binding篇1)

    Binding在业界的使用一直是音译而来的,称为"Binding".Binding的源是逻辑数据对象,目标则是UI层上面的控件对象.数据通过Binding送达UI层,被UI层展示出 ...

  4. Ubuntu下apt-get 安装apache2、php、mysql后的默认路径

    apache: 采用apt-get 在线安装,安装路径应在/etc/apache2目录下 apache配置文件/etc/apache2/apache2.conf Apache模块路径:/usr/sbi ...

  5. springboot异步任务、定时任务

    打开浏览器 http://localhost:8080/hello ,连续刷新可以看到不会 等待 3秒时间了,pom.xml controller service 代码如下. -----------S ...

  6. IDEA 光标显示注释

  7. Eclipse常见版本和JDK常用版本对应关系

    Luna 4.4  JDK1.6Mars 4.5  JDK1.7             Neon 4.6  JDK1.8Oxygen 4.7 JDK1.8Photon 4.8  2019年3月

  8. 常用jQuery技巧总结

    1.关于页面元素的引用 通过jquery的$()引用元素包括通过id.class.元素名以及元素的层级关系及dom或者xpath条件等方法,且返回的对象为jquery对象(集合对象),不能直接调用do ...

  9. #python# error:UnicodeEncodeError: 'latin-1' codec can't encode character '\u2026' in position 30: ordinal not in range(256)

    headers={ 'Referer':'https://www.lagou.com/jobs/lis-rds=&fromSearch=true&suginput=', 'User-A ...

  10. jquery实现按键增加删除css属性(hide)

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...