传送门

写在前面:为了保护正睿题目版权,这里不放题面,只写题解。


“这应该是正睿OI历史上第一次差评破百的比赛。”

“这说明来正睿集训的人越来越多了。”

“我很不能理解差评,因为在比赛开始前就有超过\(40\)个差评了。”

天祺鸽鸽nb!


  • A

“这题标程是线性的,可是为什么没有出\(5\times 10^6\)呢?因为spj要带个\(\log\),这样就T了。”

\(100pts:\)

打表观察发现有解当且仅当\(\sum k^{-a_i}\geq 1\)。

不失一般性,我们可以证明\(\sum k^{-a_i}= 1\)时有解。

为了让\(\sum k^{-a_i}= 1\),我们发现排好序后最后\(k\)个数一定是相等的(多余的数可以删掉,不影响结果)。

\(k\cdot k^{-a_i}=k^{-(a_i-1)}\),所以把\(k\)个\(a_i\)改成\(1\)个\(a_i-1\)总贡献不变。

实现的时候,可以把\(k\)个\(i\)转化成\(1\)个\(i-1\),最终得到一个\(0\)则有解。

输出方案排序后贪心即可,优秀的实现可以做到线性。

  • B

\(42pts:\)

由于\([l_2,r_2]\)互不相交,发现区间长度之和不会超过\(n\),暴力并查集即可。

复杂度\(O(n \cdot \alpha n)\)。

\(100pts:\)

仍然是由于\([l_2,r_2]\)互不相交,对于每个\([l_2,r_2]\)向\([l_1,r_1]\)连边,发现每个\([l_2,r_2]\)只会有一个父亲,形成了一个天然的树形结构。

对于每个插入和询问,都在树上暴力地跳父亲,跳到根节点一起处理即可。

唯一的一个问题是,如果\([l_1,r_1]\)和\([l_2,r_2]\)相交,可能会需要暴力跳过整个区间。

如果两个区间相交超过一半,则一定有循环节,对循环节取模即可。

复杂度\(O(m^2)\)。我并查集学傻了

  • C

显然图中每个连通块都要有偶数条边,且每个点度数都是奇数。

问题等价于,找\(\frac{n}2\)条链覆盖所有边,要求端点覆盖每个点且边不相交。此外要求每条链长度都是偶数。

考虑没有偶数的限制怎么做,显然建虚点跑欧拉回路就可以。

\(10pts:\)

对于完全图,发现只有\(4|n\)时才有解。

考虑每次加入\(4\)个点,内部构造显然,与之前\(4n\)个点连边是一个度数均为偶数的二分图,很好做。

\(65pts:\)

爆搜,我也不知道为什么跑那么快

\(100pts:\)

考虑求出一个\(\frac m2\)条链的链覆盖。假设已经求出了,我们建一张新图,如果存在一条链直接连接\((x,y)\),则在新图中连一条\((x,y)\)的边。显然新图中度数的奇偶性不会改变,在新图中跑欧拉回路,最后把每条链拆开即可。

考虑如何求这个链覆盖。

在图里建一棵dfs树,则非树边一定是返祖边。

对于每条边都在深度较浅的点考虑,这样到某个节点时,与它有关的剩余边一定只包含:它的儿子与它之间的边,它的子树中向它连的返祖边,它连向父亲的边。对前两类边匹配,如果有剩余就匹配掉到父亲的边。由于边数为偶数,根节点一定可以匹配。


写在后面:

这场同时是正睿历史上评价波动最大的一场比赛。虽然在某些人的操纵下最后还是变成了负数,但是仍然在中途达到了\(+30\),我也很荣幸记录下了这一刻。

原因很有趣,也很悲伤。

“由于小K受伤了,因此许多朋友都去慰问他。”

“小K正在忙着恢复服务器中丢失的一份数据。”

“小K拥有\(n\)个工作室,这\(n\)个工作室之间用\(m\)条道路相互连接。”

小K代表什么呢?相信大家已经知道了。

这也是我第一次对这道题的出题人产生由衷的敬意。

ZROI 19.08.04模拟赛的更多相关文章

  1. ZROI 19.08.07模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. "正睿从来没有保证,模拟赛的题目必须原创." "文案不是我写的,有问题找喵老师去."--蔡老师 ...

  2. ZROI 19.08.09模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. A \(70pts:\) 维护一个栈,从一侧向另一侧扫描,如果新加入的元素与当前栈顶相同,则出栈,否则进栈.显然一个子串是括号序列,当 ...

  3. ZROI 19.08.06模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. 今天正睿又倒闭了,从删库到跑路. 天祺鸽鸽txdy! A "不要像个小学生一样一分钟就上来问东西."--蔡老板 虽 ...

  4. ZROI 19.08.12模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. "我发现问题的根源是大家都不会前缀和."--敦爷 A 敦爷spj写错了,差点把蒟蒻swk送走 \(50pts:\) ...

  5. ZROI 19.08.11模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. dlstql,wsl A \(10pts:\) \(a=100,T=100\),对每个排列构造一个反的,一步到位即可. \(20pts ...

  6. ZROI 19.08.10模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. A \(20pts:\) 枚举操作序列然后暴力跑,复杂度\(O(6^n)\). \([50,80]pts:\) 枚举改成dfs,每层操 ...

  7. ZROI 19.08.05模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. A \(21pts:\) 随便枚举,随便爆搜就好了. \(65pts:\) 比较显然的dp,设\(f_{i,j,k}\)表示在子树\( ...

  8. ZROI 19.08.08模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. 首先恭喜swk今天翻车! "小心大样例演你."--天祺鸽鸽 果然swk今天被大样例演死了,天祺鸽鸽诚不欺我! A ...

  9. ZROI 19.08.02 杂题选讲

    给出\(n\)个数,用最少的\(2^k\)或\(-2^{k}\),使得能拼出所有数,输出方案.\(n,|a_i|\leq 10^5\). 显然一个绝对值最多选一次.这个性质非常强. 如果所有都是偶数, ...

随机推荐

  1. linux等 入门思维导图

  2. java课堂疑问解答与思考1

    问题一 Java类中只能有一个公有类吗?用Eclipse检测以下程序是否正确.是否在接口中同样适用. 答:一个源文件里必须稚嫩发有一个公有类,名称必须与文件名一致.以上程序经过编译没有提示错误.jav ...

  3. 【Deep Learning Nanodegree Foundation笔记】第 1 课:INTRODUCTION Welcome

    Welcome to the Deep Learning Nanodegree Foundations Program! In this lesson, you'll meet your instru ...

  4. GitLab使用小结

    对Git和GitLab的使用作一个小结 GitLab基于Git,可以作为团队开发项目使用,因此通常会有一个主分支master和其他分支,因此项目成员中任意一人不能随意push到主分支中,容易引起混乱: ...

  5. python基础--导入模块

    一,import的使用1, 模块就是一组功能的集合体,我们的程序可以导入模块来复用模块中的功能一个模块就是包含了一组功能的python文件,例如demo.py 可以通过import来使用这个文件定义d ...

  6. css实现毛玻璃效果

    css实现毛玻璃效果,效果图 1,html代码 <div class="mainHolder"> <div class="textHolder" ...

  7. swagger生成文档初步使用

    在大部分情况下,公司都会要求提供详细的接口文档,对于开发来说,文档有时候在赶进度的情况下,也是一件头疼的事.而swagger的自动生成文档功能,就可以帮助我们减少工作量,对于文档的修改也可以在代码中随 ...

  8. [转帖]达梦数据库(DM6)和ORACLE 10g的异同点

    达梦数据库(DM6)和ORACLE 10g的异同点    https://bbs.aliyun.com/detail/351337.html   花花浪子 级别: 小白 发帖 0 云币 -41 加关注 ...

  9. springboot笔记之helloworld

    开发工具:IDEA 2019 springboot版本:2.1.9 一.springboot2.x VS 1.x 基础环境升级 最低 JDK 8,支持 JDK 9,不再支持 Java 6 和 7 依赖 ...

  10. P5596 洛谷月赛 题 题解

    因为a>=0,b>=0,所以y^2-x^2>=0,所以y>x,因为都是自然数设y=x+k,化简得x=b-k^2/2*k-a;可知x仅当b-k^2%2*k-a==0且b-k^2与 ...