多层全连接神经网络实现minist手写数字分类
import torch
import numpy as np
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
batch_size = 64
learning_rate = 1e-2
num_epoches = 20
data_tf = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5],[0.5])])
#transform.Compose() 将各种预处理操作组合在一起
#transform.ToTensor() 将数据转化为Tensor类型,并自动标准化,Tensor的取值是(0,1)
#transform.Normalize()是标准化操作,类似正太分布的标准化,第一个值是均值,第二个值是方差
#如果图像是三个通道,则transform.Normalize([a,b,c],[d,e,f])
train_dataset = datasets.MNIST(root = './mnist_data', train = True, transform = data_tf, download = True) #用datasets加载数据集,传入预处理
test_dataset = datasets.MNIST(root = './mnist_data', train = False,transform = data_tf)
train_loader = DataLoader(train_dataset, batch_size = batch_size, shuffle = True) #利用DataLoader建立一个数据迭代器
test_loader = DataLoader(test_dataset, batch_size = batch_size, shuffle = False)
class Batch_Net(nn.Module):
def __init__(self, inputdim, hidden1, hidden2, outputdim):
super(Batch_Net, self).__init__()
self.layer1 = nn.Sequential(nn.Linear(inputdim, hidden1), nn.BatchNorm1d(hidden1), nn.ReLU(True))
self.layer2 = nn.Sequential(nn.Linear(hidden1, hidden2), nn.BatchNorm1d(hidden2), nn.ReLU(True))
self.layer3 = nn.Sequential(nn.Linear(hidden2, outputdim)) def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
return x
model = Batch_Net(28*28, 300, 100, 10)
model

定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr = learning_rate)
训练模型
for epoch in range(num_epoches):
train_loss = 0
train_acc = 0
model.train() #这句话会自动调整batch_normalize和dropout值,很关键!
for img, label in train_loader:
img = img.view(img.size(0), -1) #将数据扁平化为一维
img = Variable(img)
label = Variable(label)
# 前向传播
out = model(img)
loss = criterion(out, label)
# 反向传播
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 记录误差
train_loss += loss.item()
# 计算分类的准确率
_, pred = out.max(1)
num_correct = (pred == label).sum().item()
acc = num_correct / img.shape[0]
train_acc += acc print('epoch:{},train_loss:{:.6f},acc:{:.6f}'.format(epoch+1, train_loss/len(train_loader), train_acc/len(train_loader)))
epoch:1,train_loss:0.002079,acc:0.999767
......
epoch:19,train_loss:0.001532,acc:0.999917
epoch:20,train_loss:0.001670,acc:0.999850
测试集
model.eval() #在评估模型时使用,固定BN 和 Dropout
eval_loss = 0
val_acc = 0
for img , label in test_loader:
img = img.view(img.size(0), -1)
img = Variable(img, volatile = True) #volatile=TRUE表示前向传播是不会保留缓存,因为测试集不需要反向传播
label = Variable(label, volatile = True)
out = model(img)
loss = criterion(out, label)
eval_loss += loss.item()
_,pred = torch.max(out, 1)
num_correct = (pred == label).sum().item()
print(num_correct)
eval_acc = num_correct / label.shape[0]
val_acc += eval_acc print('Test Loss:{:.6f}, Acc:{:.6f}'.format(eval_loss/len(test_loader), val_acc/len(test_loader)))
Test Loss:0.062413, Acc:0.981091
多层全连接神经网络实现minist手写数字分类的更多相关文章
- keras与卷积神经网络(CNN)实现识别minist手写数字
在本篇博文当中,笔者采用了卷积神经网络来对手写数字进行识别,采用的神经网络的结构是:输入图片——卷积层——池化层——卷积层——池化层——卷积层——池化层——Flatten层——全连接层(64个神经元) ...
- Tensorflow 多层全连接神经网络
本节涉及: 身份证问题 单层网络的模型 多层全连接神经网络 激活函数 tanh 身份证问题新模型的代码实现 模型的优化 一.身份证问题 身份证号码是18位的数字[此处暂不考虑字母的情况],身份证倒数第 ...
- python手写神经网络实现识别手写数字
写在开头:这个实验和matlab手写神经网络实现识别手写数字一样. 实验说明 一直想自己写一个神经网络来实现手写数字的识别,而不是套用别人的框架.恰巧前几天,有幸从同学那拿到5000张已经贴好标签的手 ...
- matlab手写神经网络实现识别手写数字
实验说明 一直想自己写一个神经网络来实现手写数字的识别,而不是套用别人的框架.恰巧前几天,有幸从同学那拿到5000张已经贴好标签的手写数字图片,于是我就尝试用matlab写一个网络. 实验数据:500 ...
- MNIST手写数字分类simple版(03-2)
simple版本nn模型 训练手写数字处理 MNIST_data数据 百度网盘链接:https://pan.baidu.com/s/19lhmrts-vz0-w5wv2A97gg 提取码:cgnx ...
- Tensorflow-线性回归与手写数字分类
线性回归 步骤 构造线性回归数据 定义输入层 设计神经网络中间层 定义神经网络输出层 计算二次代价函数,构建梯度下降 进行训练,获取预测值 画图展示 代码 import tensorflow as t ...
- 使用神经网络来识别手写数字【译】(三)- 用Python代码实现
实现我们分类数字的网络 好,让我们使用随机梯度下降和 MNIST训练数据来写一个程序来学习怎样识别手写数字. 我们用Python (2.7) 来实现.只有 74 行代码!我们需要的第一个东西是 MNI ...
- Pytorch1.0入门实战一:LeNet神经网络实现 MNIST手写数字识别
记得第一次接触手写数字识别数据集还在学习TensorFlow,各种sess.run(),头都绕晕了.自从接触pytorch以来,一直想写点什么.曾经在2017年5月,Andrej Karpathy发表 ...
- C#中调用Matlab人工神经网络算法实现手写数字识别
手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化 投影 矩阵 目标定位 Matlab 手写数字图像识别简介: 手写 ...
随机推荐
- paramiko : 错误集整理
错误1 时间2017-12-19:No handlers could be found for logger "paramiko.transport" 解决办法:parami ...
- js 性能优化 - web worker
当在 HTML 页面中执行脚本时,页面的状态是不可响应的,直到脚本已完成. web worker 是运行在后台的 JavaScript,独立于其他脚本,不会影响页面的性能. 您可以继续做任何愿意做的事 ...
- python-文件操作2(读写文件的详细操作)
python-文件操作2(读写文件的详细操作) 1.读取文件的前6行数据 f = open ("my-hert2","r") #encoding="u ...
- centos在无外网情况下,进行yum挂载
- 011-通过安装percona插件监控MySQL
percona-monitoring-plugins是percona专门为MySQL监控的工具,支持Nagios,cacti,zabibx,本文主要介绍percona-monitoring-plugi ...
- C# WinFrom自适应
1.在窗体的Project中建一个自适应的类. 2.类的代码如下 public class AutoSizeForm { //(1).声明结构,只记录窗体和其控件的初始位置和大小. public st ...
- 弹弹弹,弹走鱼尾纹的弹出菜单(vue)
前言 上一篇面试的总结,大家看的还行,因为量很大,错误在所难免,希望大家发现错误了可以告诉我一声,我的邮箱是236490794@qq.com,一个小前端的希望. 言归正传 我们老样子直接先上效果图再开 ...
- java模拟验证码生成
设计思想 第一步:随机生成字符串 第二步:用户输入字符串 第三步:将两个字符串转化为同一类型 第四步:比较是否相同 第五步:输出结果 程序流程图 程序源代码 /*2017/10/7 王翌淞 验证码模拟 ...
- hive严格模式
说真的,这个模式在我做sql开发的岁月里,从未用到过.用的都是动态分区非严格模式. 我的好友东岳同学在车上问我.确实问到了我 .体现出了我基本功不扎实的情况. 1.what is Hive严格模式 H ...
- Mac系统Pycharm永久激活
网上找了很多Pycharm永久激活的方法,前面几步几乎都一样,最后激活的那步却总行不通,于是这边记录下 一.本人下载的是2018.2.7版本,官方有很多版本可供下载,下载地址http://www.je ...