假设以u为根时结果是tot,现在转换到了以u的儿子v为根,那么结果变成了tot-size[v]+(sizetot-size[v])

根据这个转移方程,先求出以1为根的tot,然后dfs一次转移即可

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm> using namespace std;
#define ll long long
#define N 200005
int a[N],n;
vector<int>e[N];
ll sum[N],ans=,sig=;
inline void dfs1(int p,int fa,int dep){
sum[p]=a[p],sig+=(ll)a[p]*dep;
for(int i=;i<e[p].size();++i)
if(e[p][i]!=fa)
dfs1(e[p][i],p,dep+),sum[p]+=sum[e[p][i]];
}
inline void dfs2(int p,int fa,ll Sum){
ans=max(ans,Sum);
for(int i=;i<e[p].size();++i)
if(e[p][i]!=fa)
dfs2(e[p][i],p,Sum-2ll*sum[e[p][i]]+sum[]);
}
int main(){
cin>>n;
for(int i=;i<=n;++i)
a[i]=;
for(int i=,u,v;i<n;++i)
cin>>u>>v,e[u].push_back(v),e[v].push_back(u);
dfs1(,,);
dfs2(,,sig);
cout<<ans+n; }

树形dp经典换根法——cf1187E的更多相关文章

  1. 模拟赛:树和森林(lct.cpp) (树形DP,换根DP好题)

    题面 题解 先解决第一个子问题吧,它才是难点 Subtask_1 我们可以先用一个简单的树形DP处理出每棵树内部的dis和,记为dp0[i], 然后再用一个换根的树形DP处理出每棵树内点 i 到树内每 ...

  2. 【NOIP2016练习】T2 旅行(树形DP,换根)

    题意:小C上周末和他可爱的同学小A一起去X湖玩. X湖景区一共有n个景点,这些景点由n-1条观光道连接着,从每个景点开始都可以通过观光道直接或间接地走到其他所有的景点.小C带着小A从1号景点开始游玩. ...

  3. 【HDOJ6662】Acesrc and Travel(树形DP,换根)

    题意:有一棵n个点的树,每个点上有两个值a[i],b[i] A和B在树上行动,A到达i能得到a[i]的偷税值,B能得到b[i],每次行动只能选择相邻的点作为目标 两个人都想最大化自己的偷税值和对方的差 ...

  4. 题解 poj3585 Accumulation Degree (树形dp)(二次扫描和换根法)

    写一篇题解,以纪念调了一个小时的经历(就是因为边的数组没有乘2 phhhh QAQ) 题目 题目大意:找一个点使得从这个点出发作为源点,流出的流量最大,输出这个最大的流量. 以这道题来介绍二次扫描和换 ...

  5. cf219d 基础换根法

    /*树形dp换根法*/ #include<bits/stdc++.h> using namespace std; #define maxn 200005 ]; int root,n,s,t ...

  6. poj 3585 Accumulation Degree(二次扫描和换根法)

    Accumulation Degree 大致题意:有一棵流量树,它的每一条边都有一个正流量,树上所有度数为一的节点都是出口,相应的树上每一个节点都有一个权值,它表示从这个节点向其他出口可以输送的最大总 ...

  7. poj3585树最大流——换根法

    题目:http://poj.org/problem?id=3585 二次扫描与换根法,一次dfs求出以某个节点为根的相关值,再dfs遍历一遍树,根据之前的值换根取最大值为答案. 代码如下: #incl ...

  8. $Poj3585\ Accumulation Degree$ 树形$DP/$二次扫描与换根法

    Poj Description 有一个树形的水系,由n-1条河道与n个交叉点组成.每条河道有一个容量,联结x与y的河道容量记为c(x,y),河道的单位时间水量不能超过它的容量.有一个结点是整个水系的发 ...

  9. 51nod 1353 树 | 树形DP经典题!

    51nod 1353 树 | 树形DP好题! 题面 切断一棵树的任意条边,这棵树会变成一棵森林. 现要求森林中每棵树的节点个数不小于k,求有多少种切法. 数据范围:\(n \le 2000\). 题解 ...

随机推荐

  1. web APP 开发之踩坑手记

    屏蔽输入框怪异的内阴影 -webkit-appearance:none 禁止自动识别电话和邮箱 <meta content="telephone=no" name=" ...

  2. 制作一个自己的xhprof测试平台

    1 1.首先安装php开发环境,比如lnmp. 2.安装xhprof ps: 记住从github上面下载(https://github.com/phacility/xhprof), 不要从pecl.p ...

  3. Vue+element ui table 导出到excel

    需求: Vue+element UI table下的根据搜索条件导出当前所有数据 参考: https://blog.csdn.net/u010427666/article/details/792081 ...

  4. “使用Adobe Reader XI打开PDF文件,左侧无法显示导航列表”解决方法

    在Word中将文档另存为PDF格式之后,再使用Adobe Reader XI打开,没有左侧导航列表: 解决步骤: 1.在word另存为时,在另存为对话框中,点击如下图所示的“选项” 2.在弹出的对话框 ...

  5. 一个简易h5涉及的ps技巧

    事实证明,很长时间不做,是会忘掉的呀,的呀,呀,啊~ 1.合并图层 CTRL+E合并多个图层 2.切片 3.导出 文件-------导出------存储为web所用格式-------->> ...

  6. 强大的httpClientUtils

    <!-- https://mvnrepository.com/artifact/com.arronlong/httpclientutil --> <dependency> &l ...

  7. Java之Java的文件结构(才不是叛教!)

    Java从入门到恰饭之文件结构,使用IDEA开发. 新建包 包名一般选择公司域名(https://tieba.baidu.com/)的反转 创建完成是这样的 对应的三层文件夹 我们创建一个类 pack ...

  8. FFmpeg Download

    https://ffmpeg.zeranoe.com/builds/

  9. thinkphp 类的扩展

    ThinkPHP的类库主要包括公共类库和应用类库,都是基于命名空间进行定义和扩展的.只要按照规范定义,都可以实现自动加载. 大理石平台价格 公共类库 公共类库通常是指ThinkPHP/Library目 ...

  10. poi之Excel(在线生成)下载

    Apache POI是Apache软件基金会的开放源码函式库,POI提供API给Java程序对Microsoft Office格式档案读和写的功能. poi之Excel下载 @RequestMappi ...