这是一篇关于CNN入门知识的博客,基本手法是抄、删、改、查,就算是自己的一个笔记吧,以后忘了多看看。
 
1.边界检测示例
假如你有一张如下的图像,你想让计算机搞清楚图像上有什么物体,你可以做的事情是检测图像的垂直边缘和水平边缘。
 
卷积计算可以得到图像的边缘,下图0表示图像暗色区域,10为图像比较亮的区域,同样用一个3*3过滤器,对图像进行卷积,得到的图像中间亮,两边暗,亮色区域就对应图像边缘。

 
 
通过以下的水平过滤器和垂直过滤器,可以实现图像水平和垂直边缘检测:
 
在卷积神经网络中把这些过滤器当成我们要学习的参数,卷积神经网络训练的目标就是去理解过滤器的参数。 常用的过滤器:
 

 
2. padding
在上部分中,通过一个3*3的过滤器来对6*6的图像进行卷积,得到了一幅4*4的图像,假设输出图像大小为n*n与过滤器大小为f*f,输出图像大小则为(n−f+1)∗(n−f+1)
这样做卷积运算的缺点是,卷积图像的大小会不断缩小,另外图像的左上角的元素只被一个输出所使用,所以在图像边缘的像素在输出中采用较少,也就意味着你丢掉了很多图像边缘的信息,为了解决这两个问题,就引入了padding操作,也就是在图像卷积操作之前,沿着图像边缘用0进行图像填充。
对于3*3的过滤器,我们填充宽度为1时(加了一圈),就可以保证输出图像和输入图像一样大。6+1+1-3+1=6:
 
 
same padding 在平面外部补0 若且步长是1的话图片大小与原来相同。
valid padding不会超出平面外部。所以比原来图片要小
池化层是在卷积层之后的,会降维,减少特征数
 
3.卷积步长
卷积步长是指过滤器在图像上滑动的距离,上两部分步长都默认为1,如果卷积步长为2,卷积运算过程为:
 
 
 
4.彩色图像的卷积
以上讲述的卷积都是灰度图像的,如果想要在RGB图像上进行卷积,过滤器的大小不在是3*3而是有3*3*3,最后的3对应为通道数(channels),卷积生成图像中每个像素值为3*3*3过滤器对应位置和图像对应位置相乘累加,过滤器依次在RGB图像上滑动,最终生成图像大小为4*4。
 
另外一个问题是,如果我们在不仅仅在图像总检测一种类型的特征,而是要同时检测垂直边缘、水平边缘、45度边缘等等,也就是多个过滤器的问题。如果有两个过滤器,最终生成图像为4*4*2的立方体,这里的2来源于我们采用了两个过滤器。如果有10个过滤器那么输出图像就是4*4*10的立方体。
 
5.单层卷积网络
通过上一节的讲述,图像通过两个过滤器得到了两个4*4的矩阵,在两个矩阵上分别加入偏差b1和b2,然后对加入偏差的矩阵做非线性的Relu变换,得到一个新的4*4矩阵,这就是单层卷积网络的完整计算过程。用公式表示:
 
 
 
如果有10个过滤器参数个数有多少个呢?
--每个过滤器都有3*3*3+1=28个参数,3*3*3为过滤器大小,1是偏差系数,10个过滤器参数个数就是28*10=280个。不论输入图像大小参数个数是不会发生改变的
 
 
第L-1层:输入图形通道数=输入图像的层数=过滤器层数
第L层:输出图像通道数=过滤器个数=第L+1层输入图像层数...(不管输入和过滤层多少层,图像输入与每个过滤器卷积过后都是一层矩阵,影响输出层数的只有过滤器的个数)
 
6.简单卷积网络示例
 
 
卷积神经网络层的类型:
⦁ 卷积层(convolution,conv)
⦁ 池化层(pooling,pool)
⦁ 全连接层(Fully connected,FC)
 
7.池化层
最大池化(Max pooling)
最大池化思想很简单,以下图为例,把4*4的图像分割成4个不同的区域,然后输出每个区域的最大值,这就是最大池化所做的事情。其实这里我们选择了2*2的过滤器,步长为2。在一幅真正的图像中提取最大值可能意味着提取了某些特定特征,比如垂直边缘、一只眼睛等等
 
以下是一个过滤器大小为3*3,步长为1的池化过程,具体计算和上面相同,最大池化中输出图像的大小计算方式和卷积网络中计算方法一致,如果有多个通道需要做池化操作,那么就分通道计算池化操作。
 
平均池化和最大池化唯一的不同是,它计算的是区域内的平均值而最大池化计算的是最大值。在日常应用使用最多的还是最大池化。
 
 池化的超参数:步长、过滤器大小、池化类型最大池化or平均池化
 
8.卷积神经网络示例
以下是一个完整的卷积神经网络,用于手写字识别,这并不是一个LeNet-5网络,但是设计令该来自于LeNet-5。
 
网络各层参数个数表:
 
 
 
 
 
 博文借鉴:https://blog.csdn.net/ice_actor/article/details/78648780

CNN卷积神经网络入门整合(科普向)的更多相关文章

  1. CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?

    https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...

  2. CNN(卷积神经网络)、RNN(循环神经网络)、DNN,LSTM

    http://cs231n.github.io/neural-networks-1 https://arxiv.org/pdf/1603.07285.pdf https://adeshpande3.g ...

  3. Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

    http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...

  4. [转]Theano下用CNN(卷积神经网络)做车牌中文字符OCR

    Theano下用CNN(卷积神经网络)做车牌中文字符OCR 原文地址:http://m.blog.csdn.net/article/details?id=50989742 之前时间一直在看 Micha ...

  5. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

  6. day-16 CNN卷积神经网络算法之Max pooling池化操作学习

    利用CNN卷积神经网络进行训练时,进行完卷积运算,还需要接着进行Max pooling池化操作,目的是在尽量不丢失图像特征前期下,对图像进行downsampling. 首先看下max pooling的 ...

  7. cnn(卷积神经网络)比较系统的讲解

    本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之 ...

  8. Keras(四)CNN 卷积神经网络 RNN 循环神经网络 原理及实例

    CNN 卷积神经网络 卷积 池化 https://www.cnblogs.com/peng8098/p/nlp_16.html 中有介绍 以数据集MNIST构建一个卷积神经网路 from keras. ...

  9. TensorFlow——CNN卷积神经网络处理Mnist数据集

    CNN卷积神经网络处理Mnist数据集 CNN模型结构: 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层池化:池化视野2*2,步长为2 第二层卷积 ...

随机推荐

  1. python 生成器 yield语句

    生成器就是一个返回迭代器(iterator)的函数. 包含了 yield 的函数,就是一个生成器. 生成器每使用yield语句产生一个值,函数就会被冻结(暂停执行),被唤醒后(即再次调用)接着上次执行 ...

  2. LCA - 求任意两点间的距离

    There are n houses in the village and some bidirectional roads connecting them. Every day peole alwa ...

  3. 架构师JavaScript 的对象继承方式,有几种程序写法?

    架构师JavaScript 的对象继承方式,有几种程序写法?   一.对象冒充 其原理如下:构造函数使用 this 关键字给所有属性和方法赋值(即采用类声明的构造函数方式).因为构造函数只是一个函数, ...

  4. numpy 其它常用方法

    一.创建特殊的数组 1.ones() 语法 np.ones(shape, dtype=None) # shape 创建数组的shape # dtype 指定数组的数据类型 例子 import nump ...

  5. python self用法

    在定义类的过程中,无论是显式的创建类的构造方法,还是向类中添加实例方法,都要将self参数作为方法的第一个参数. class Person: def __init__(self): print(&qu ...

  6. 【WPF学习】第十章 WPF布局示例

    前几章用了相当大的篇幅研究有关WPF布局容器的复杂内容.在掌握了这些基础知识后,就可以研究几个完整的布局示例.通过研究完整的布局示例,可更好的理解各种WPF布局概念在实际窗口中的工作方式. 一.列设置 ...

  7. Oracle设置序列方法

    create sequence SEQ_LoanApplicantGuarantee minvalue 1 nomaxvalue start with 1 increment by 1 nocycle ...

  8. 关于github显示不出来图片的问题

    今天打开github,突然发现图标图片等都显示不出来了. 控制台看了一下 百度查找了Failed to load resource: net::ERR_CERT_COMMON_NAME_INVALID ...

  9. 编程基础--XML约束

    2020年新年第一天,不写一篇博客纪念一下都感觉对不起这个跨年 为什么会写一篇关于xml的博客呢?xml在编程中用的又不多,再多也用不着自己写约束文件,只要能看懂就行了不是吗?嗯,没别的原因,就是想研 ...

  10. hge引擎使用技巧

    图片周围最好留出一像素,即上下左右都多出一像素.然后使用pngopt.exe处理一下.这样可以减少图片拉伸.旋转时边界模糊的情况 图片宽高最好是 2的N次方