Description

有一个整数序列,它的每个数各不相同,我们不知道它的长度(即整数个数),但我们知道在某些区间中至少有多少个整数,用区间(Li,Ri,Ci)来描述,表示这个整数序列中至少有Ci个数来自区间[Li,Ri],给出若干个这样的区间,问这个整数序列的长度最少能为多少?

Input

第一行一个整数N,表示区间个数;
接下来N行每行三个整数(Li,Ri,Ci),描述一个区间。

Output

仅一个数,表示该整数序列的最小长度。

Sample Input


4 5 1 
6 10 3 
7 10 3 
5 6 1

Sample Output

4

Hint

N≤1000,
0≤Li≤Ri≤1000 ,
1≤Ci≤Ri-Li+1

Solution

本题是贪心的题。

我们可以按右端点大小从小到大排序,如果当前区间已经满足要求,那么它其中的数的位置可以任意摆放。

又因为之后区间的右端点的值比当前区间右端点的值大,所以可以贪心地选择当前区间最右端的数,这样可以尽量满足后面区间的条件。

当然还能用差分做,我太菜了不会

Code

 #include <bits/stdc++.h>

 using namespace std;

 inline int read()//快读
{
int f=,x=;
char c=getchar(); while(c<'' || c>'')
{
if(c=='-')f=-;
c=getchar();
} while(c>='' && c<='')
{
x=x*+c-'';
c=getchar();
} return f*x;
} struct Seq//定义结构体
{
int l,r,c;//分别为左端点、右端点和至少有几个数
} a[]; int n,ans,sum,s,cnt,p,v[]; inline int cmp(Seq x,Seq y)//排序所用的cmp函数
{
return x.r<y.r;
} int main()
{
n=read(); for(register int i=; i<=n; i++)
{
a[i].l=read(),a[i].r=read(),a[i].c=read();
} sort(a+,a++n,cmp);//排序 for(register int i=; i<=n; i++)//开始贪心
{
ans=; for(register int j=a[i].l; j<=a[i].r; j++)
{
if(v[j])//如果被访问过
{
++ans;//记录的数加1
}
} if(ans<a[i].c)//如果记录的数还比要求的数少
{
for(register int j=a[i].r; j>=a[i].l; j--)
{
if(!v[j])//如果没有被访问
{
++cnt,++ans,v[j]=;//答案加1,多记录1个数,并且标记为已访问 if(ans==a[i].c)//如果已经满足了要求
{
break;//退出
}
}
}
}
} printf("%d",cnt);//输出答案 return ;//结束
}

题解【洛谷P1645/CJOJ1244】序列的更多相关文章

  1. 【洛谷 P1645】 序列 (差分约束)

    题目链接 差分约束. 设\(s[i]\)表示前\(i\)个位置有多少个数,那么对于一个限制条件\((L,R,C)\),显然有 \[s[R]-s[L-1]>=C\] 于是连一条\(L-1\)到\( ...

  2. 洛谷 P1628 合并序列

    洛谷 P1628 合并序列 题目传送门 题目描述 有N个单词和字符串T,按字典序输出以字符串T为前缀的所有单词. 输入格式 输入文件第一行包含一个正整数N: 接下来N行,每行一个单词,长度不超过100 ...

  3. BZOJ 1500 洛谷2042维护序列题解

    BZ链接 洛谷链接 这道题真是丧心病狂.... 应该很容易就可以看出做法,但是写代码写的....... 思路很简单,用一个平衡树维护一下所有的操作就好了,重点讲解一下代码的细节 首先如果按照常规写法的 ...

  4. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  5. 洛谷 P5470 - [NOI2019] 序列(反悔贪心)

    洛谷题面传送门 好几天没写题解了,写篇题解意思一下(大雾 考虑反悔贪心,首先我们考虑取出 \(a,b\) 序列中最大的 \(k\) 个数,但这样并不一定满足交集 \(\ge L\) 的限制,因此我们需 ...

  6. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  7. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  8. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  9. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

随机推荐

  1. SOA分析浅谈

    根据百度定义:面向服务的架构(SOA)是一个组件模型,它将应用程序的不同功能单元(称为服务)进行拆分,并通过这些服务之间定义良好的接口和契约联系起来.接口是采用中立的方式进行定义的,它应该独立于实现服 ...

  2. 关于 setw() 函数(C++)

    // about setw() #include <iostream> #include <iomanip> #include <cstring> using na ...

  3. u盘变成Read-only file system

    先查看U盘的设备号,然后修改后重新挂载 fdisk -l sudo dosfsck -v -a /dev/sdb4  

  4. mysql如何让两个字段数据都不能重复?

    目录 场景 任务(需求) 行动(解决方案) 方案1:从代码层面解决(正确方案) 方案2:设置成两个唯一索引(正确方案) 方案3:删掉中间表,把从表的主键作为主表的外键,并将外键设置成唯一索引(正确方案 ...

  5. eclipse运行错误提示 Failed to load D:\Android\sdk\build-tools\26.0.0-preview\lib\dx.jar

    前几天在ecplise上运行项目还好好,今天一运行就提示这个错误:Your project contains error(s), please fix them before running your ...

  6. poj1000-1009小结

    poj1000-1009小结 poj1000-1009小结 poj1000 AB poj1001 Exponentiation poj1002 poj1003 poj1004 Financial Ma ...

  7. 854. Floyd求最短路(模板)

    给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数. 再给定k个询问,每个询问包含两个整数x和y,表示查询从点x到点y的最短距离,如果路径不存在,则输出“impossible”. 数 ...

  8. java下的slf4j

    一.导读 我们使用log4j框架时,经常会用slf4j-api.在运行时,经常会遇到如下的错误提示: ? 1 2 3 4 5 SLF4J: Class path contains multiple S ...

  9. tomcat常见状态码

  10. SpringBoot整合WEB开发--(六)CROS支持

    简介: CROS(Cross-Origin Resource Sharing)是由W3C制定的一种跨域资源共享技术标准,其目的为了解决前端的跨域请求,在JavaEE开发中,最常见的前端跨域请求解决方案 ...