Beijing Guards

Beijing was once surrounded by four rings of city walls: the Forbidden City Wall, the Imperial City Wall, the Inner City Wall, and finally the Outer City Wall. Most of these walls were demolished in the 50s and 60s to make way for roads. The walls were protected by guard towers, and there was a guard living in each tower. The wall can be considered to be a large ring, where every guard tower has exaetly two neighbors. The guard had to keep an eye on his section of the wall all day, so he had to stay in the tower. This is a very boring job, thus it is important to keep the guards motivated. The best way to motivate a guard is to give him lots of awards. There are several different types of awards that can be given: the Distinguished Service Award, the Nicest Uniform Award, the Master Guard Award, the Superior Eyesight Award, etc. The Central Department of City Guards determined how many awards have to be given to each of the guards. An award can be given to more than one guard. However, you have to pay attention to one thing: you should not give the same award to two neighbors, since a guard cannot be proud of his award if his neighbor already has this award. The task is to write a program that determines how many different types of awards are required to keep all the guards motivated. Input The input contains several blocks of test eases. Each case begins with a line containing a single integer l ≤ n ≤ 100000, the number of guard towers. The next n lines correspond to the n guards: each line contains an integer, the number of awards the guard requires. Each guard requires at least 1, and at most l00000 awards. Guard i and i + 1 are neighbors, they cannot receive the same award. The first guard and the last guard are also neighbors. The input is terminated by a block with n = 0. Output For each test case, you have to output a line containing a single integer, the minimum number x of award types that allows us to motivate the guards. That is, if we have x types of awards, then we can give as many awards to each guard as he requires, and we can do it in such a way that the same type of award is not given to neighboring guards. A guard can receive only one award from each type. Sample Input 3 4 2 2 5 2 2 2 2 2 5 1 1 1 1 1 0 Sample Output 8 5 3

贪心的奇数编号优先选最左边,偶数编号优先选最右边可以吗?

n为偶数时可行,但n为奇数不可以(如:n = 5时,r = 2 2 2 2 2)

二分最终答案x不妨令第一个取1,2....r[1] - 1,r[1]

x被分为前r[1]个和后x - r[1]个,简称为前面和后面

设left[i]表示第i个人在前面取了left[i]个

righe[i]表示第i个人在后面取了right[i]个

当且仅当存在一种取法使得left[n] = 0时可行

我们只需要知道多少个,至于怎么取的我们不关心

不难发现,要使left[n]尽可能小,需要让right[n - 1]尽可能大,left[n - 2]尽可能小。。。

即:i为奇数时,令left[i]尽可能小;i为偶数时,令right[i]尽可能小

不难发现,当x >= max(r[i], r[i] + 1)时,满足如下转移方程

i为奇数:left[i] = min(r[1] - left[i - 1] ,r[i]), right[i] = r[i] - left[i]

i为偶数:right[i] = min(x - r[1] - right[i - 1], r[i]), left[i] = r[i] - right[i]

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <vector>
#define min(a, b) ((a) < (b) ? (a) : (b))
#define max(a, b) ((a) > (b) ? (a) : (b))
#define abs(a) ((a) < 0 ? (-1 * (a)) : (a))
inline void swap(int &a, int &b)
{
int tmp = a;a = b;b = tmp;
}
inline void read(int &x)
{
x = ;char ch = getchar(), c = ch;
while(ch < '' || ch > '') c = ch, ch = getchar();
while(ch <= '' && ch >= '') x = x * + ch - '', ch = getchar();
if(c == '-') x = -x;
} const int INF = 0x3f3f3f3f;
const int MAXN = + ; int r[MAXN], n, ans = , left[MAXN], right[MAXN]; bool solve(int x)
{
left[] = r[];right[] = ;
for(register int i = ;i <= n;++ i)
{
if(i & )
{
right[i] = min(x - r[] - right[i - ], r[i]);
left[i] = r[i] - right[i];
}
else
{
left[i] = min(r[] - left[i - ], r[i]);
right[i] = r[i] - left[i];
}
}
return left[n] == ;
} int main()
{
while(scanf("%d", &n) != EOF && n)
{
for(register int i = ;i <= n;++ i) read(r[i]);
if(n == )
{
printf("%d\n", r[]);
continue;
}
ans = r[] + r[n];
for(register int i = ;i <= n;++ i) ans = max(ans, r[i] + r[i - ]);
if(n & )
{
int l = ans, r = ans, mid;
for(register int i = ;i <= n;++ i) r = max(r, ::r[i] * );
while(l <= r)
{
mid = (l + r) >> ;
if(solve(mid)) r = mid - , ans = mid;
else l = mid + ;
}
}
printf("%d\n", ans);
}
return ;
}

LA3177

LA3177 Beijing Guards的更多相关文章

  1. LA 3177 Beijing Guards(二分法 贪心)

    Beijing Guards Beijing was once surrounded by four rings of city walls: the Forbidden City Wall, the ...

  2. uva 1335 - Beijing Guards(二分)

    题目链接:uva 1335 - Beijing Guards 题目大意:有n个人为成一个圈,其中第i个人想要r[i]种不同的礼物,相邻的两个人可以聊天,炫耀自己的礼物.如果两个相邻的人拥有同一种礼物, ...

  3. UVALive 3177 Beijing Guards

    题目大意:给定一个环,每个人要得到Needi种物品,相邻的人之间不能得到相同的,问至少需要几种. 首先把n=1特判掉. 然后在n为偶数的时候,答案就是max(Needi+Needi+1)(包括(1,n ...

  4. 题解 UVA1335 【Beijing Guards】

    UVA1335 Beijing Guards 双倍经验:P4409 [ZJOI2006]皇帝的烦恼 如果只是一条链,第一个护卫不与最后一个护卫相邻,那么直接贪心,找出最大的相邻数的和. 当变成环,贪心 ...

  5. 【二分答案+贪心】UVa 1335 - Beijing Guards

    Beijing was once surrounded by four rings of city walls: the Forbidden City Wall, the Imperial City ...

  6. uva 1335 - Beijing Guards

    竟然用二分,真是想不到: 偶数的情况很容易想到:不过奇数的就难了: 奇数的情况下,一个从后向前拿,一个从前向后拿的分配方法实在太妙了! 注: 白书上的代码有一点点错误 代码: #include< ...

  7. Uva LA 3177 - Beijing Guards 贪心,特例分析,判断器+二分,记录区间内状态数目来染色 难度: 3

    题目 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_pr ...

  8. UVA 1335 Beijing Guards(二分答案)

    入口: https://cn.vjudge.net/problem/UVA-1335 [题意] 有n个人为成一个圈,其中第i个人想要r[i]种不同的礼物,相邻的两个人可以聊天,炫耀自己的礼物.如果两个 ...

  9. Uva 长城守卫——1335 - Beijing Guards

    二分查找+一定的技巧 #include<iostream> using namespace std; +; int n,r[maxn],Left[maxn],Right[maxn];//因 ...

随机推荐

  1. css 图片高度自适应

    开始采用js,获取屏幕宽度,按宽高比来设置图片大小. var wid = window.screen.width; wid = wid * 0.85; $('.Img').css('width',wi ...

  2. 小米手机 DELETE_FAILED_INTERNAL_ERROR Error while Installing APKs

    手机:小米2s,MIUI 9 7.11.16 开发版 手机已处于开发者模式,启用了USB调试,已使用USB线连接了手机,在Android Studio 工具栏点击 "Run ‘app’(Sh ...

  3. nicescroll 使用与配置

    使用// 1. 简单模式,设置html元素滚动 $(document).ready(function() { $("html").niceScroll(); }); // 2. 返 ...

  4. VC操作Excel之基本操作(颜色等)【转载】

    文章出处https://blog.csdn.net/form88/article/details/78566390 EXCEL里如何知道某种颜色的ColorIndex的值 ===fag::====== ...

  5. hdu 4563

    hdu 4563 把每个命令走的距离抽象成完全背包 枚举最后一个不是整点走完的命令 #include <iostream> #include <algorithm> #incl ...

  6. 上海第三产业增加值 占比GDP首破七成

    上海第三产业增加值 占比GDP首破七成 2016年08月16日08:10  来源:新闻晨报 分享到:     不久前结束的ChinaJoy上,一家名为HYPEREAL的VR公司展台前,体验者的热情程度 ...

  7. System.Web.Mvc.FileStreamResult.cs

    ylbtech-System.Web.Mvc.FileStreamResult.cs 1.程序集 System.Web.Mvc, Version=5.2.3.0, Culture=neutral, P ...

  8. Git命令使用和配置

    git config --global user.name "your name" git config --global user.email "your email& ...

  9. 03_springmvc整合mybatis

    一.整合思路 springmvc+mybaits的系统架构: 第一步整合dao层:mybatis和spring整合:通过spring管理mapper接口,使用mapper的扫描器自动扫描mapper接 ...

  10. CentOS6.5下源码安装多个MySQL实例及复制搭建

    多实例安装本节是在CentOS6.5下源码安装MySQL5.6.35的基础上,在同一台机器增加一个MySQL实例.参考Centos中安装多个mysql数据的配置实例,安装目录为/usr/local/m ...