题面

Description

一个合数的真因数是指这个数不包括其本身的所有因数,

例如 6 的正因数有1, 2, 3, 6,其中真因数有 1, 2, 3。

一个合数的最大真因数则是这个数的所有真因数中最大的一个,例如 6 的最大真因数为 3。

给定正整数 l 和 r,请你求出 l 和 r 之间(包括 l 和 r)所有合数的最大真因数之和。

Input

输入共一行,包含两个正整数 l 和 r。保证 l ≤ r。

Output

输出共一行,包含一个整数,表示 [l,r] 内所有合数的最大真因数之和。

Sample Input

1 10

Sample Output

17

【样例 1 解释】

在 1 至 10 之间的合数有 4, 6, 8, 9, 10,

它们的最大真因数分别为 2, 3, 4, 3, 5,

因此最大真因数之和为 2 + 3 + 4 + 3 + 5 = 17。

Hint

【样例 2 输入】

101 1000

【样例 2 输出】

163446

【样例 3 输入】

180208 975313

【样例 3 输出】

151642139152

【样例 4 输入】

339762200 340762189

【样例 4 输出】

112318862921546

【样例 5 输入】

2500000000 5000000000

【样例 5 输出】

3094668961678105770

题目分析

要求合数的最大真因数,相当于求合数除以其最小质因子。

再Min_25筛求素数和的过程中:

\[g(n,j)=
\begin{cases}
g(n,j-1)&P_j^2> n\\
g(n,j-1)-f(P_j)\cdot[g(\frac{n}{P_j},j-1)-\sum_{i=1}^{j-1}f(P_i)]&P_j^2\leq n
\end{cases}
\]

其中

\[g(\frac{n}{P_j},j-1)-\sum_{i=1}^{j-1}f(P_i)
\]

求得的便是最小质因子为\(P_j​\)的合数之和。

我们只需在处理\(g\)的时候统计答案即可。

代码实现

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef unsigned long long LL;
const int N=250005;
using namespace std;
inline LL Getint(){register LL x=0,g=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')g=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*g;}
int prime[N],tot;bool vis[N];
LL sqr,w[N],g[N],sp[N];
int id1[N],id2[N],m;
void Pre(int n){
for(int i=2;i<=n;i++){
if(!vis[i])prime[++tot]=i,sp[tot]=sp[tot-1]+i;
for(int j=1;j<=tot&&1ll*i*prime[j]<=n;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0)break;
}
}
} LL Solve(LL n){
tot=m=0;
sqr=sqrt(n),Pre(sqr);
for(LL i=1,j;i<=n;i=j+1){
j=n/(n/i),w[++m]=n/i;
g[m]=w[m]*(w[m]+1)/2-1;
if(w[m]<=sqr)id1[w[m]]=m;else id2[j]=m;
}
LL ans=0;
for(int j=1;j<=tot;j++){
for(int i=1;i<=m&&(LL)prime[j]*prime[j]<=w[i];i++){
int k=(w[i]/prime[j]<=sqr)?id1[w[i]/prime[j]]:id2[n/(w[i]/prime[j])];
if(i==1)ans+=g[k]-sp[j-1];
g[i]-=prime[j]*(g[k]-sp[j-1]);
}
}
return ans;
}
int main(){
LL l=Getint(),r=Getint();
cout<<Solve(r)-Solve(l-1);
return 0;
}

【FJWC2018】最大真因数的更多相关文章

  1. BZOJ-5244 最大真因数(min25筛)

    题意:一个数的真因数指不包括其本身的所有因数,给定L,R,求这个区间的所有数的最大真因数之和. 思路:min25筛可以求出所有最小因子为p的数的个数,有可以求出最小因子为p的所有数之和. 那么此题就是 ...

  2. Project Euler 95:Amicable chains 亲和数链

    Amicable chains The proper divisors of a number are all the divisors excluding the number itself. Fo ...

  3. Python 计算当真因子个数为偶数个时为幸运数,计算区间内幸运数之和

    晚饭后朋友发来个问题,正好无事做,动手写了一下 若一个正整数有偶数个不同的真因子,则称该数为幸运数.如4含有2个真因子为 1 和 2 .故4是幸运数.求[2,100]之间的全部幸运数之和. 常规思路 ...

  4. POJ3292&&2115

    这两道题还是比较简单的,没有什么难度 不过归在数论这个专题里我还是比较认同的,多少有些关系 3292 题目大意:给你一个范围n,让你求出这个范围内所有形式类似\(4k+1(k为正整数)\)的数中的H- ...

  5. 【FCS NOI2018】福建省冬摸鱼笔记 day1

    省冬的第一天. 带了本子,笔,一本<算法导论>就去了.惊讶于为什么同学不带本子记笔记. 他们说:“都学过了.”,果然这才是巨神吧. 第一天:数论,讲师:zzx 前几页的课件挺水,瞎记了点笔 ...

  6. c经典算法

    1. 河内之塔 说明 河内之塔(Towers of Hanoi)是法国人M.Claus(Lucas)于1883年从泰国带至法国的,河内为越战时 北越的首都,即现在的胡志明市:1883年法国数学家 Ed ...

  7. 相亲数--Python

    想亲数:在遥远的古代,人们发现某些自然数之间有特殊的关系:如果两个数a和b,a的所有除本身以外的因数之和等于b,b的所有除本身以外的因数之和等于a,则称a,b是一对相亲数 code: def sumF ...

  8. Java经典算法大全

    1.河内之塔.. 2.Algorithm Gossip: 费式数列. 3. 巴斯卡三角形 4.Algorithm Gossip: 三色棋 5.Algorithm Gossip: 老鼠走迷官(一) 6. ...

  9. 求n的因子个数与其因子数之和

    方法一:朴素算法:O(n). #include<bits/stdc++.h> using namespace std; int get_num(int n){ ; ;i<=n;++i ...

随机推荐

  1. 自定义vant ui steps组件效果实现

    记录个问题,当作笔记吧:因为vue项目的移动端vant ui 的step组件跟ui设计图有差别,研究了半天还是没法使用step组件,只能手动设置一个 先上效果图和代码: (1)HTML部分 <d ...

  2. Oracle 五笔码函数

    五笔码 select comm.fun_spellcode_wb('数据库') from dual 结果:ORY 函数 CREATE OR REPLACE FUNCTION COMM.FUN_SPEL ...

  3. qdatatime大小

    QDateTime time1; QDateTime time2; uint stime = time1.toTime_t(); uint etime = time2.toTime_t(); int ...

  4. 前端学习(七)less(笔记)

    less---处理器:koala_2.0.4_portable 属于css预处理语言,可以让你的css语言更有逻辑性! 编译css的! 准备工作:    1.项目:        js         ...

  5. Java中的杂流(闸总)

    标准输入输出流 System.in: 标准输入流是InputStream的子类对象,字节输入流,只不过是jvm给定的唯一一个从键盘控制条读入的流. public static final InputS ...

  6. Java中IO流之字符流

    我们有了字节流,为什么还需要字符流? 字符的底层是 字节 + 编码表 = 字符,字符是人能看懂的信息. 字符流在使用的时候,会以字节流为基础,把字节写入缓冲区,在缓冲区内根据编码类型(UTF-8,GB ...

  7. Shiro学习(8)拦截器机制

    8.1 拦截器介绍 Shiro使用了与Servlet一样的Filter接口进行扩展:所以如果对Filter不熟悉可以参考<Servlet3.1规范>http://www.iteye.com ...

  8. Android中自己定义一个shade.xml

    自己定义一个shade: <shape> <!-- 实心 --> <solid android:color="#ff9d77"/> <!- ...

  9. 基于aop的日志记录方式实现

    说明 最近有个项目需要增加日志记录功能,因为这个项目原来是基于spring开发的,在查阅了相关资料以后,我采用了spring aop的方式实现该需求,然后就有了本篇文章. 思路 我这边需求是这样的:要 ...

  10. jmeter测试之-脚本制作

    一.脚本录制  1.遇见的问题,回放的时候总是登录失败 解决方式:设置HTTP请求为—跟随重定向 2.新增一个用户的时候,脚本参数里面输入汉字,在浏览器查看的时候显示问号 解决方式:脚本编码方式增加u ...