UVA1395 (最苗条的最小生成树)
链接
https://vjudge.net/problem/UVA-1395
代码
#include<bits/stdc++.h>
using namespace std;
#define ull unsigned long long
#define ll long long
const int maxn=5e4+;
int par[maxn];
int rank1[maxn]; void init(int n) //初始化
{
for(int i=;i<=n;i++)
{
par[i]=i;
rank1[i]=;
}
}
int find(int x)
{
if(par[x]==x)
{
return x;
}
else
{
return par[x]=find(par[x]);
}
}
void unite(int x,int y)
{
x=find(x);
y=find(y);
if(x==y)
return ;
if(rank1[x]<rank1[y])
{
par[x]=y;
}
else
{
par[y]=x;
}
if(rank1[x]==rank1[y])
rank1[x]++;
}
int n,m;
struct edge{
int x,y,cost;
}e[];
bool cmp(const edge e1,const edge e2)
{
return e1.cost<e2.cost;
}
int main()
{
while(cin>>n>>m&&(n||m))
{
for(int i=;i<=m;i++)
{
cin>>e[i].x>>e[i].y>>e[i].cost;
}
int res=-;
sort(e+,e+m+,cmp);
for(int i=;i<=m;i++)
{
init(n);
int num=;
for(int j=i;j<=m;j++)
{
edge e1=e[j];
int x=find(e1.x);
int y=find(e1.y);
if(x!=y)
{
num++;
unite(e1.x,e1.y);
if(num==n-)
{
if(res==-)
res=e[j].cost-e[i].cost;
else
res=min(res,e[j].cost-e[i].cost); }
}
// cout<<i<<" "<<num<<"\n";
}
}
cout<<res<<"\n";
} return ;
}
UVA1395 (最苗条的最小生成树)的更多相关文章
- UVA1395 Slim Span(枚举最小生成树)
题意: 求最小生成树中,最大的边减去最小的边 最小值. 看了题解发现真简单=_= 将每条边进行从小到大排序,然后从最小到大一次枚举最小生成树,当构成生成树的时候,更新最小值 #include < ...
- 洛谷 题解 UVA1395 【苗条的生成树 Slim Span】
[题意] 给出一个\(n(n<=100)\)个节点的的图,求最大边减最小边尽量小的生成树. [算法] \(Kruskal\) [分析] 首先把边按边权从小到大进行排序.对于一个连续的边集区间\( ...
- UVA 1395 苗条的生成树(最小生成树+并查集)
苗条的生成树 紫书P358 这题最后坑了我20分钟,怎么想都对了啊,为什么就wa了呢,最后才发现,是并查集的编号搞错了. 题目编号从1开始,我并查集编号从0开始 = = 图论这种题真的要记住啊!!题目 ...
- uva1395 枚举不同区间的最小生成树
枚举起点,求最小生成树.如果当前不能实现n个点连通,直接不再枚举. AC代码: #include<cstdio> #include<algorithm> using names ...
- uva1395 - Slim Span(最小生成树)
先判断是不是连通图,不是就输出-1. 否则,把边排序,从最小的边开始枚举最小生成树里的最短边,对每个最短边用Kruskal算法找出最大边. 或者也可以不先判断连通图,而是在枚举之后如果ans还是INF ...
- 洛谷 UVA1395 苗条的生成树 Slim Span
题目链接 题目描述 求所有生成树中最大边权与最小边权差最小的,输出它们的差值. 题目分析 要求所有生成树中边权极差最小值,起初令人无从下手.但既然要求所有生成树中边权极差最小值,我们自然需要对每一棵生 ...
- Uva1395 POJ3522 Slim Span (最小生成树)
Description Given an undirected weighted graph G, you should find one of spanning trees specified as ...
- poj3522 苗条树(极差最小生成树)
给你N个点和M条边 要求你求出一个生成树使得这个生成树里边权极差最小 做法① n*m做法 当最小的边已知的时候这个生成树就确定 所以最大的边也确定了 于是我们每次枚举最小的边 然后用kruskal做一 ...
- 【Uvalive4960】 Sensor network (苗条树,进化版)
[题意] 给出N个点,M条边,问这N个点形成的生成树的最大权值边-最小权值边的最小值 InputThe input consists of several test cases, separated ...
随机推荐
- win10系统安装VMware虚拟机软件以及linux系统
一.安装VMware 1.在VMware官网下载VMware Workstation Pro 15.5.1 下载地址:https://my.vmware.com/cn/web/vmware/detai ...
- 学习CSS之如何改变CSS伪元素的样式
一.CSS伪元素 CSS 伪元素用于向某些选择器设置特殊效果. 伪元素的用法如下: selector:pseudo-element {property:value;} CSS 类也可以和伪元素搭配使用 ...
- WinRAR目录穿越
WinRAR目录穿越漏洞浅析及复现(CVE-2018-20250) 文章来源: https://www.t00ls.net/articles-50276.html EXP: https://githu ...
- Windows环境下Nginx配置本地虚拟域名
进入conf文件夹,新建servers文件夹: 将内部的server配置段提取单独放在一个文件里,存到了conf/servers下,以方便配置多个虚拟主机. 并在nginx.conf里http配置段内 ...
- [dubbo 源码之 ]1. 服务提供方如何发布服务
服务发布 启动流程 1.ServiceConfig#export 服务提供方在启动部署时,dubbo会调用ServiceConfig#export来激活服务发布流程,如下所示: Java API: ` ...
- vue垂死挣扎--遇到的问题
1, 原生js监听浏览器后退及禁用返回 +. 涉及到的history的知识 2, watch监听路由变化
- AOP in .NET
AOP in .NET AOP是所有现代OOP语言开发框架中的基础功能,随着Spring框架的普及,对于AOP的使用已经像喝水一样普通.可是知其然还要其所以然.本文将基于.NET环境探讨实现AOP的底 ...
- linux中vim常用操作
三种模式 # 命令模式 vim 文件名 # 插入模式 按a/i/o 进行插入模式 按esc 重新进入命令模式 # 编辑模式 按:(冒号)进入编辑模式 插入命令 命令 作用 a 在光标所在字符后插入 A ...
- Flink中逻辑计划和物理计划的概念划分和对应关系
逻辑计划 logicGraph或者jobGraph,其端点为operator,edge为数据流向. operator往往代表一个函数. 同一个分区内的具有连续上下游关系的函数组成operator-ch ...
- redis 5.0.7 源码阅读——双向链表
redis中双向链表相关的文件为:adlist.h与adlist.c 一.数据结构 redis里定义的双向链表,与普通双向链表大致相同 单个节点: typedef struct listNode { ...