UVA1395 (最苗条的最小生成树)
链接
https://vjudge.net/problem/UVA-1395
代码
#include<bits/stdc++.h>
using namespace std;
#define ull unsigned long long
#define ll long long
const int maxn=5e4+;
int par[maxn];
int rank1[maxn]; void init(int n) //初始化
{
for(int i=;i<=n;i++)
{
par[i]=i;
rank1[i]=;
}
}
int find(int x)
{
if(par[x]==x)
{
return x;
}
else
{
return par[x]=find(par[x]);
}
}
void unite(int x,int y)
{
x=find(x);
y=find(y);
if(x==y)
return ;
if(rank1[x]<rank1[y])
{
par[x]=y;
}
else
{
par[y]=x;
}
if(rank1[x]==rank1[y])
rank1[x]++;
}
int n,m;
struct edge{
int x,y,cost;
}e[];
bool cmp(const edge e1,const edge e2)
{
return e1.cost<e2.cost;
}
int main()
{
while(cin>>n>>m&&(n||m))
{
for(int i=;i<=m;i++)
{
cin>>e[i].x>>e[i].y>>e[i].cost;
}
int res=-;
sort(e+,e+m+,cmp);
for(int i=;i<=m;i++)
{
init(n);
int num=;
for(int j=i;j<=m;j++)
{
edge e1=e[j];
int x=find(e1.x);
int y=find(e1.y);
if(x!=y)
{
num++;
unite(e1.x,e1.y);
if(num==n-)
{
if(res==-)
res=e[j].cost-e[i].cost;
else
res=min(res,e[j].cost-e[i].cost); }
}
// cout<<i<<" "<<num<<"\n";
}
}
cout<<res<<"\n";
} return ;
}
UVA1395 (最苗条的最小生成树)的更多相关文章
- UVA1395 Slim Span(枚举最小生成树)
题意: 求最小生成树中,最大的边减去最小的边 最小值. 看了题解发现真简单=_= 将每条边进行从小到大排序,然后从最小到大一次枚举最小生成树,当构成生成树的时候,更新最小值 #include < ...
- 洛谷 题解 UVA1395 【苗条的生成树 Slim Span】
[题意] 给出一个\(n(n<=100)\)个节点的的图,求最大边减最小边尽量小的生成树. [算法] \(Kruskal\) [分析] 首先把边按边权从小到大进行排序.对于一个连续的边集区间\( ...
- UVA 1395 苗条的生成树(最小生成树+并查集)
苗条的生成树 紫书P358 这题最后坑了我20分钟,怎么想都对了啊,为什么就wa了呢,最后才发现,是并查集的编号搞错了. 题目编号从1开始,我并查集编号从0开始 = = 图论这种题真的要记住啊!!题目 ...
- uva1395 枚举不同区间的最小生成树
枚举起点,求最小生成树.如果当前不能实现n个点连通,直接不再枚举. AC代码: #include<cstdio> #include<algorithm> using names ...
- uva1395 - Slim Span(最小生成树)
先判断是不是连通图,不是就输出-1. 否则,把边排序,从最小的边开始枚举最小生成树里的最短边,对每个最短边用Kruskal算法找出最大边. 或者也可以不先判断连通图,而是在枚举之后如果ans还是INF ...
- 洛谷 UVA1395 苗条的生成树 Slim Span
题目链接 题目描述 求所有生成树中最大边权与最小边权差最小的,输出它们的差值. 题目分析 要求所有生成树中边权极差最小值,起初令人无从下手.但既然要求所有生成树中边权极差最小值,我们自然需要对每一棵生 ...
- Uva1395 POJ3522 Slim Span (最小生成树)
Description Given an undirected weighted graph G, you should find one of spanning trees specified as ...
- poj3522 苗条树(极差最小生成树)
给你N个点和M条边 要求你求出一个生成树使得这个生成树里边权极差最小 做法① n*m做法 当最小的边已知的时候这个生成树就确定 所以最大的边也确定了 于是我们每次枚举最小的边 然后用kruskal做一 ...
- 【Uvalive4960】 Sensor network (苗条树,进化版)
[题意] 给出N个点,M条边,问这N个点形成的生成树的最大权值边-最小权值边的最小值 InputThe input consists of several test cases, separated ...
随机推荐
- LeetCode 127. Word Ladder 单词接龙(C++/Java)
题目: Given two words (beginWord and endWord), and a dictionary's word list, find the length of shorte ...
- c++ 初始化列表和构造函数初始化区别
先上代码 #include <iostream> class MyContruct { public: MyContruct() { std::cout << "My ...
- 轻松搞懂Python递归函数的原理与应用
递归: 在函数的定义中,函数内部的语句调用函数本身. 1.递归的原理 学习任何计算机语言过程中,“递归”一直是所有人心中的疼.不知你是否听过这个冷笑话:“一个面包,走着走着饿了,于是就把自己吃了”. ...
- Spring学习笔记:自动创建Proxy
为什么需要自动创建Proxy 手动为所有需要代理的类用ProxyFactoryBean创建代理Proxy需要大量的配置. 这样如果需要代理的类很多,配置就很繁琐,而且也不便于xml配置的维护. 因此S ...
- JavaScript实现计算后缀表达式(逆波兰表达式)以及将中缀表达式转为后缀表达式
逆波兰表达式,它的语法规定,表达式必须以逆波兰表达式的方式给出.逆波兰表达式又叫做后缀表达式.这个知识点在数据结构和编译原理这两门课程中都有介绍,下面是一些例子: 正常的表达式 逆波兰表达式 a+b ...
- nginx-tengine集合
nginx-tengine集合 nginx获取客户端真实ip Nginx/tengine realserver健康检测
- tomcat 安装在 linux
简单说下什么是tomcat?它与apache web服务器的关系? Apache是web服务器(静态解析,如HTML),tomcat是java应用服务器(动态解析,如JSP.PHP) Tomcat只是 ...
- Vscode使用
一. Vscode使用 1. 点击最下方的错误警告显示条,出现四个选项最后一个为终端命令(dos命令) 2. 提交代码输入提交信息,打勾提交,选择类似刷新按钮进行推送 3. 同步代码点击类似刷新按钮即 ...
- 珠峰-babel
#### babel 翻译的require为了给node使用么.浏览器可以使用么.#### amd, cmd的规范.和实现原理.#### babel的三个核心包,什么使用使用.#### babel的几 ...
- Android中实现自定义View组件并使其能跟随鼠标移动
场景 实现效果如下 注: 博客: https://blog.csdn.net/badao_liumang_qizhi 关注公众号 霸道的程序猿 获取编程相关电子书.教程推送与免费下载. 实现 新建An ...