链接

https://vjudge.net/problem/UVA-1395

代码

#include<bits/stdc++.h>
using namespace std;
#define ull unsigned long long
#define ll long long
const int maxn=5e4+;
int par[maxn];
int rank1[maxn]; void init(int n) //初始化
{
for(int i=;i<=n;i++)
{
par[i]=i;
rank1[i]=;
}
}
int find(int x)
{
if(par[x]==x)
{
return x;
}
else
{
return par[x]=find(par[x]);
}
}
void unite(int x,int y)
{
x=find(x);
y=find(y);
if(x==y)
return ;
if(rank1[x]<rank1[y])
{
par[x]=y;
}
else
{
par[y]=x;
}
if(rank1[x]==rank1[y])
rank1[x]++;
}
int n,m;
struct edge{
int x,y,cost;
}e[];
bool cmp(const edge e1,const edge e2)
{
return e1.cost<e2.cost;
}
int main()
{
while(cin>>n>>m&&(n||m))
{
for(int i=;i<=m;i++)
{
cin>>e[i].x>>e[i].y>>e[i].cost;
}
int res=-;
sort(e+,e+m+,cmp);
for(int i=;i<=m;i++)
{
init(n);
int num=;
for(int j=i;j<=m;j++)
{
edge e1=e[j];
int x=find(e1.x);
int y=find(e1.y);
if(x!=y)
{
num++;
unite(e1.x,e1.y);
if(num==n-)
{
if(res==-)
res=e[j].cost-e[i].cost;
else
res=min(res,e[j].cost-e[i].cost); }
}
// cout<<i<<" "<<num<<"\n";
}
}
cout<<res<<"\n";
} return ;
}

UVA1395 (最苗条的最小生成树)的更多相关文章

  1. UVA1395 Slim Span(枚举最小生成树)

    题意: 求最小生成树中,最大的边减去最小的边 最小值. 看了题解发现真简单=_= 将每条边进行从小到大排序,然后从最小到大一次枚举最小生成树,当构成生成树的时候,更新最小值 #include < ...

  2. 洛谷 题解 UVA1395 【苗条的生成树 Slim Span】

    [题意] 给出一个\(n(n<=100)\)个节点的的图,求最大边减最小边尽量小的生成树. [算法] \(Kruskal\) [分析] 首先把边按边权从小到大进行排序.对于一个连续的边集区间\( ...

  3. UVA 1395 苗条的生成树(最小生成树+并查集)

    苗条的生成树 紫书P358 这题最后坑了我20分钟,怎么想都对了啊,为什么就wa了呢,最后才发现,是并查集的编号搞错了. 题目编号从1开始,我并查集编号从0开始 = = 图论这种题真的要记住啊!!题目 ...

  4. uva1395 枚举不同区间的最小生成树

    枚举起点,求最小生成树.如果当前不能实现n个点连通,直接不再枚举. AC代码: #include<cstdio> #include<algorithm> using names ...

  5. uva1395 - Slim Span(最小生成树)

    先判断是不是连通图,不是就输出-1. 否则,把边排序,从最小的边开始枚举最小生成树里的最短边,对每个最短边用Kruskal算法找出最大边. 或者也可以不先判断连通图,而是在枚举之后如果ans还是INF ...

  6. 洛谷 UVA1395 苗条的生成树 Slim Span

    题目链接 题目描述 求所有生成树中最大边权与最小边权差最小的,输出它们的差值. 题目分析 要求所有生成树中边权极差最小值,起初令人无从下手.但既然要求所有生成树中边权极差最小值,我们自然需要对每一棵生 ...

  7. Uva1395 POJ3522 Slim Span (最小生成树)

    Description Given an undirected weighted graph G, you should find one of spanning trees specified as ...

  8. poj3522 苗条树(极差最小生成树)

    给你N个点和M条边 要求你求出一个生成树使得这个生成树里边权极差最小 做法① n*m做法 当最小的边已知的时候这个生成树就确定 所以最大的边也确定了 于是我们每次枚举最小的边 然后用kruskal做一 ...

  9. 【Uvalive4960】 Sensor network (苗条树,进化版)

    [题意] 给出N个点,M条边,问这N个点形成的生成树的最大权值边-最小权值边的最小值 InputThe input consists of several test cases, separated ...

随机推荐

  1. Spring IOC容器源码分析

    注:本文转自https://javadoop.com/post/spring-ioc Spring 最重要的概念是 IOC 和 AOP,本篇文章其实就是要带领大家来分析下 Spring 的 IOC 容 ...

  2. 如何在kalilinux上安装docker

    如何在kalilinux上安装docker 0X00安装背景 在windows上安装docker使用未果后,便决定在kalilinux上安装一个docker 0X01安装步骤 分别在linux终端执行 ...

  3. JAVA 调用控件开发

    最近homoloCzh有个小伙伴接到一个需求说是把一个c# 写的具备扫描.调阅等功能 winfrom 影像控件嵌入到java Swing当中,让小伙伴很苦恼啊,从年前一直研究到年后,期间用了很多种方法 ...

  4. java架构之路-(微服务专题)feign的基本使用和nacos的配置中心

    上次回归: 上次我们说了ribbon的基本使用,包括里面的内部算法,算法的细粒度配置,还有我们自己如何实现我们自己的算法,主要还是一些基本使用的知识,还不会使用ribbon的小伙伴可以回去看一下上一篇 ...

  5. NodeJS 介绍安装

    1.NodeJS简介 Node.js是基于Chrome JavaScript运行时建立的一个平台,实际上它是对Google Chrome V8引擎进行了封装,它主要用于创建快速的.可扩展的网络应用.N ...

  6. 手把手带你阅读Mybatis源码(三)缓存篇

    前言 大家好,这一篇文章是MyBatis系列的最后一篇文章,前面两篇文章:手把手带你阅读Mybatis源码(一)构造篇 和 手把手带你阅读Mybatis源码(二)执行篇,主要说明了MyBatis是如何 ...

  7. WebSocket协议分析

    WebSocket协议分析 1.什么是WebSocket协议 WebScoket协议是基于TCP协议建立的全双工通信,所谓的全双工通信就是双向同时通信. 2.WebSocket协议优点 WebSock ...

  8. 优雅的C#

    @符号:字符串中的转义符不转义,可支持字符串换行,例如:string test = "hello\\",正常输出hello\,改成string test = @"hell ...

  9. 用pycharm自带的数据库创建项目00

    一.生成表格1.创建模型类(在 models.py文件中创建一个person类并且继承models.Models类) 2.生成表格(在项目目录下)(1)生成迁移文件:在pycharm下方的命令行Ter ...

  10. EF--封装三层架构IOC

    为什么分层? 不分层封装的话,下面的代码就是上端直接依赖于下端,也就是UI层直接依赖于数据访问层,分层一定要依赖抽象,满足依赖倒置原则,所以我们要封装,要分层 下面这张图和传统的三层略有不同,不同之处 ...