Cyclic GCDs

题目链接

题面描述

有\(n\)个点,每个点有权值。

现有排列\(P\),\(p_i\)表示\(i\)个点向\(p_i\)连了一条边。

显然会形成若干个简单环。每个简单环的权值定义为环上最小的权值,一张图的权值定义为所有环的权值的乘积。

所有形成了\(k\)个简单环的图的权值和记为\(b_k\)

现在要求\(b_1,b_2...b_n\)的最大公因数。

输出对大质数取模。

\(n\le10^5\)

解题思路

首先可以发现,顺序无关紧要,为了方便处理,我们把权值从小到大排序。

考虑这样的一个\(DP\)

我们设\(dp[i][j]\)表示考虑到前\(i\)个数,共形成了\(j\)个简单环的权值和。

我们考虑把第\(i+1\)个数塞进去的方式:

  • 塞入到一个之前的环中,可以接在每个点后面,共有\(i\)种接法。由于我们从小到大排序,所以不会改变每个环上的最小值,得到转移:\(dp[i+1][j]+=i*dp[i][j]\)
  • 独立成环,方案数不变,多了一个\(a_{i+1}\)的权值,得到转移:\(dp[i+1][j+1]+=a_{i+1}*dp[i][j]\)

于是我们得到了一个\(O(n^2)\)的做法。

我们把\(dp[k]\)的生成函数写出来,设为

\[F_k(x)=\sum_{i=0}^n dp[k][i]*x^i
\]

根据上面的转移,可知:

\[F_{k+1}(x)=F_k(x)*(a_{k+1}x+k)
\]

于是,最终的\(dp[n]\)的生成函数为:

\[F_n(x)=\prod_{i=0}^{n-1}(a_{i+1}x+i)
\]

可以证明,最后的\(gcd\)等于每个\(gcd\)相乘。

于是我们就愉快的做完了。

证明

命题:\(S(x),R(x)\)为整系数多项式,每一项系数的\(gcd\)分别为\(s,r\),则多项式\(P(x)Q(x)\)每一项系数的\(gcd\)为\(sr\)

证明:不妨设\(s=r=1\),不难证明,这与原命题等价。

​ 假设\(S(x)R(x)\)每一项系数的\(gcd\)为质数\(p\)的倍数,我们期望导出矛盾。

​ 考虑最高次项的系数,为\(S(x)\)与\(R(x)\)的最高项系数相乘得到的结果。

​ 因为最高次项系数为质数\(p\)的倍数,所以\(S(x),R(x)\)的最高项系数其中一个为\(p\)的倍数,不妨设为\(S(x)\)的最 高项系数。

​ 因为系数为\(p\)的倍数,它与其他系数乘积也为\(p\)的倍数,并不影响最后多项式任何一项系数对\(p\)的整除性,所 以将\(S(x)\)的最高项次数变为\(0\),并不影响最后的\(gcd\)是否是\(p\)的倍数。

​ 然后就变成了一个子问题,继续迭代,取最高次项,直到有一个多项式变为零多项式为止。

​ 那么,这个零多项式,他原来的每一项系数均为\(p\)的倍数,这与假设不符,矛盾。

​ 故原命题成立。

代码

#include<bits/stdc++.h>
using namespace std;
const int mod=998244353;
int n;
int ans;
int a[100005];
int gcd(int a,int b){
return a%b?gcd(b,a%b):b;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
sort(a+1,a+n+1);
ans=a[1];
for(int i=1;i<n;i++)
ans=1ll*ans*gcd(a[i+1],i)%mod;
printf("%d\n",ans);
}

Cyclic GCDs的更多相关文章

  1. 【AtCoder】Dwango Programming Contest V题解

    A - Thumbnail 题意简述:给出N个数,找出N个数中和这N个数平均值绝对值最小的数 根据题意写代码即可= = #include <bits/stdc++.h> #define f ...

  2. Codeforces Round #385 (Div. 2) A. Hongcow Learns the Cyclic Shift 水题

    A. Hongcow Learns the Cyclic Shift 题目连接: http://codeforces.com/contest/745/problem/A Description Hon ...

  3. codeforces 709C C. Letters Cyclic Shift(贪心)

    题目链接: C. Letters Cyclic Shift 题意: 现在一串小写的英文字符,每个字符可以变成它前边的字符即b-a,c-a,a-z这样,选一个字串变换,使得得到的字符串字典序最小; 思路 ...

  4. Cyclic Nacklace[HDU3746]

    Cyclic Nacklace Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  5. HDU 3746:Cyclic Nacklace

    Cyclic Nacklace Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  6. V-rep学习笔记:机器人逆运动学数值解法(Cyclic Coordinate Descent Method)

    When performing inverse kinematics (IK) on a complicated bone chain, it can become too complex for a ...

  7. hdu-----(3746)Cyclic Nacklace(kmp)

    Cyclic Nacklace Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  8. hdu 1853 Cyclic Tour 最小费用最大流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1853 There are N cities in our country, and M one-way ...

  9. Cyclic Nacklace

    Problem Description CC always becomes very depressed at the end of this month, he has checked his cr ...

随机推荐

  1. leetcode-220-存在重复元素③*

    题目描述: 方法一:二叉搜索树+滑动窗口 方法二:桶排序 O(N) class Solution: def containsNearbyAlmostDuplicate(self, nums: List ...

  2. mysql双主热备

    先搭建mysql主从模式,主从请参考mysql 主从笔记 然后在在配置文件里添加如下配置 1 log_slave_updates= #双主热备的关键参数.默认情况下从节点从主节点中同步过来的修改事件是 ...

  3. NOI2019网络同步赛总结

    先说说分数:\(100+20+0+100+0+0=220\) 我果然还是个大蒟蒻-- Day1 比赛之前还在回顾着<灵笼>,时间一到就立刻进入比赛. 快速地浏览了一遍题目,然后开始刚T1. ...

  4. Ubunto 无法连接ssh客服端

    解决办法: (1)查看ip地址是否冲突 我在单位的虚拟机ip地址是192.168.14.85,与其它机器冲突了.改成了192.168.14.83   (2)关闭Ubuntu14.04的防火墙 root ...

  5. 旋转矩形碰撞检测 OBB方向包围盒算法

    在cocos2dx中进行矩形的碰撞检测时需要对旋转过的矩形做碰撞检查,由于游戏没有使用Box2D等物理引擎,所以采用了OBB(Oriented bounding box)方向包围盒算法,这个算法是基于 ...

  6. Web开发之Tomcat&Servlet

    <!doctype html>01 - JavaEE - Tomcat&Servlet figure:first-child { margin-top: -20px; } #wri ...

  7. DNA repair HDU - 2457 AC自动机+DP

    题意: 给你N个模板串,并且给你一个文本串, 现在问你这个文本串最少需要改变几个字符才能使得它不包含任何模板串. (以上字符只由A,T,G,C构成) 题解: 刚开始做这一题的时候表示很懵逼,好像没有学 ...

  8. spark2.0在IDE运行的问题

    spark2.0搭建到服务器跑很方便,但是本地跑和之前1.6还是有点区别,鼓捣了一点到半夜2点多总算能跑了.. 遇到的问题 1.idea千万要用file---setting-----plugins的s ...

  9. Echart使用过的属性总结

    改变坐标轴颜色与粗细: axisLine: { lineStyle: {//设置轴的颜色 color: '#CD0000', width: 1,//轴的宽度 } } 改变坐标轴上刻度的间隔与倾斜方向: ...

  10. 关于安装了sqlite对于vs的组件,重启vs后,在外面可以连接sqlite数据库,但是在建立实体模型时没有sqlite数据源的问题

    出自:http://bbs.csdn.net/topics/390917337 兄弟,刚刚在stackoverflow上找到了解决方法了http://stackoverflow.com/questio ...