题意简述

给定一棵 \(n\) 个点的树,起初每个点都为黑色。

2种操作,要么改变某个点的颜色(由黑至白或由白至黑),要么询问距离最远的两个黑点间的距离。

共 \(m\) 次操作。

\(n\leq 10^5,m\leq 2\times 10^5\)


想法

动态点分治模板题。

如果只有一次询问操作,那么显然可以用点分治来做。(树形 \(dp\) 也可以,但那样不容易拓展到动态的情况)

点分治时,以每个点为根时,统计过它的满足条件的路径即可。

我们需要知道的只是以该点 \(u\) 的每个子节点 \(v\) 为根的子树到该点的最长距离 \(mx[v]\)。

过该点的路径的最长距离为 所有 \(mx[v]\) 中的最大值+次大值。注意如果该点为黑点,最长距离则为 所有 \(mx[v]\) 和 \(0\) 中的最大值+次大值。

同时我们应统计出以 \(u\) 为根的子树中所有点到上一个分治中心的距离的最大值 \(mx[u]\)。

回到这道题,有修改和多次查询。

于是建立 “点分树”,即将当前分治中心与它的各子节点的分治中心连边形成的树。

这棵树有一些性质:

1.只有 \(logn\) 层

2.原树中以每个分治中心为根的子树里的所有点 就是 点分树中以它为根的子树中的所有点。

3.修改一个点 \(x\) ,影响到的是点分树上所有 \(x\) 的祖先为分治中心的情况。

设“点分树”中点 \(u\) 的父节点为 \(pa[u]\)

在此题中,对于每个点 \(u\),维护堆 \(c[u]\) 记录 \(u\) 为分治中心的子树中的所有黑点到 \(pa[u]\) 的距离,堆 \(b[u]\) 记录 \(u\) 为分治中心时各子节点到 \(u\) 的最大距离。即 \(b[u]\) 中的值,是所有 $c[v].top(),如果 \(u\) 为黑点则还需加上0。

对全局维护堆 \(a\) 记录过每个分治中心的最长距离。\(a\) 中的值,就是 \(b[u]\) 中的最大值+次大值。

由于有修改,所以堆需要满足可删除。

用两个优先队列维护一个堆即可。

还有一个问题,如何快速求原树上两点间距离?

我们知道倍增和树剖都是 \(O(logn)\) 的,但更快的方法是 \(st\) 表+ \(dfs\) 序。

这个 \(dfs\) 序很特殊,每次访问完 \(u\) 的子节点 \(v\) 后,要在序列中再加入 \(u\) 。记录进入每个点的时间 \(dfn[u]\)

在这个序列上用 \(O(nlogn)\) 预处理出 \(st\) 表,之后查询 \(x\) 与 \(y\) 的 \(lca\) 就是 \(dfn[x]\) 与 \(dfn[y]\) 着一段序列中深度最小的点,\(O(1)\) 可求。


总结

技巧

1.\(O(1)\) 求静态树上两点的 \(lca\):\(st\) 表+ \(dfs\) 序

int tot,dfn[N],num[N*2],dep[N];
void dfs(int u){
int v;
dfn[u]=++tot; num[tot]=u;
for(node *p=h1[u];p;p=p->nxt)
if(!dfn[v=p->v]) {
dep[v]=dep[u]+1;
dfs(v);
num[++tot]=u; //与普通dfs序不同的地方!
}
}
int st[N*2][18],lg[N*2];
void getst(){
dep[1]=1; dfs(1);
for(int i=1;i<=tot;i++) st[i][0]=dep[num[i]];
for(int j=1;j<18;j++){
int t=(1<<j);
for(int i=1;i+t-1<=tot;i++)
st[i][j]=min(st[i][j-1],st[i+t/2][j-1]);/**/
}
int t=0,cur=1;
for(int i=1;i<=tot;i++)
if(i<cur) lg[i]=t-1;
else {
lg[i]=t;
t++; cur*=2;
}
}
int lca(int x,int y){ //lca的深度
x=dfn[x]; y=dfn[y];
if(x>y) swap(x,y);
int t=lg[y-x+1];
return min(st[x][t],st[y+1-(1<<t)][t]);
}

2.可删堆

用两个优先队列维护,一个维护所有的,一个维护删除的。

struct heap{
priority_queue<int> q,d;
void ins(int x) { q.push(x); }
void del(int x) { d.push(x); }
void pop(){ //删除最大值
while(d.size() && d.top()==q.top()) q.pop(),d.pop();
q.pop();
}
int fr(){ //堆中最大值
while(d.size() && d.top()==q.top()) q.pop(),d.pop();
return q.top();
}
int size() { return q.size()-d.size(); }
};

手残

\(st\) 表中注意第二维不要开小了!

注意判断堆是否为空。


代码

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<queue> using namespace std; int read(){
int x=0;
char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) x=x*10+ch-'0',ch=getchar();
return x;
} const int N = 100005; int n;
struct node{
int v;
node *nxt;
}pool[N*4],*h1[N],*h[N];
int cnt;
void addedge1(int u,int v){
node *p=&pool[++cnt],*q=&pool[++cnt];
p->v=v;p->nxt=h1[u];h1[u]=p;
q->v=u;q->nxt=h1[v];h1[v]=q;
}
void addedge(int u,int v){
node *p=&pool[++cnt],*q=&pool[++cnt];
p->v=v;p->nxt=h[u];h[u]=p;
q->v=u;q->nxt=h[v];h[v]=q;
} //get lca
int tot,dfn[N],num[N*2],dep[N];
void dfs(int u){
int v;
dfn[u]=++tot; num[tot]=u;
for(node *p=h1[u];p;p=p->nxt)
if(!dfn[v=p->v]) {
dep[v]=dep[u]+1;
dfs(v);
num[++tot]=u; /**/
}
}
int st[N*2][18],lg[N*2];
void getst(){
dep[1]=1; dfs(1);
for(int i=1;i<=tot;i++) st[i][0]=dep[num[i]];
for(int j=1;j<18;j++){
int t=(1<<j);
for(int i=1;i+t-1<=tot;i++)
st[i][j]=min(st[i][j-1],st[i+t/2][j-1]);/**/
}
int t=0,cur=1;
for(int i=1;i<=tot;i++)
if(i<cur) lg[i]=t-1;
else {
lg[i]=t;
t++; cur*=2;
}
}
int lca(int x,int y){
x=dfn[x]; y=dfn[y];
if(x>y) swap(x,y);
int t=lg[y-x+1];
return min(st[x][t],st[y+1-(1<<t)][t]);
}
int dis(int x,int y) {
return x==0||y==0?dep[x+y]:dep[x]+dep[y]-2*lca(x,y);
} //heap
struct heap{
priority_queue<int> q,d;
void ins(int x) { q.push(x); }
void del(int x) { d.push(x); }
void pop(){
while(d.size() && d.top()==q.top()) q.pop(),d.pop();
q.pop();
}
int fr(){
while(d.size() && d.top()==q.top()) q.pop(),d.pop();
return q.top();
}
int se(){
int x=fr(); pop();
int y=fr(); q.push(x);
return x+y;
}
int size() { return q.size()-d.size(); }
}a,b[N],c[N]; //build dianfen tree
int rt,root,all,sz[N],mx[N],vis[N],pa[N];
void getrt(int u,int fa){
int v;
sz[u]=1; mx[u]=0;
for(node *p=h1[u];p;p=p->nxt)
if((v=p->v)!=fa && !vis[v]){
getrt(v,u);
sz[u]+=sz[v];
mx[u]=max(mx[u],sz[v]);
}
mx[u]=max(mx[u],all-sz[u]);
if(mx[u]<mx[rt]) rt=u;
}
void getsz(int u,int fa,int id){
int v;
sz[u]=1;
c[id].ins(dis(u,pa[id]));
for(node *p=h1[u];p;p=p->nxt)
if((v=p->v)!=fa && !vis[v]){
getsz(v,u,id);
sz[u]+=sz[v];
}
}
void work(int u){
int v;
vis[u]=1;
c[u].ins(dis(u,pa[u]));
b[u].ins(0);
for(node *p=h1[u];p;p=p->nxt)
if(!vis[v=p->v]){
getsz(v,u,u);
all=sz[v]; rt=0; getrt(v,u);
addedge(u,rt);
pa[rt]=u; v=rt;
work(rt);
b[u].ins(c[v].fr());
}
if(b[u].size()>1) a.ins(b[u].se());
} //modify
void turn_off(int u){//1->0
int x=u;
if(b[x].size()>1) a.del(b[x].se());
b[x].ins(0);
if(b[x].size()>1) a.ins(b[x].se());
while(x){
if(pa[x]) { //del fa
if(b[pa[x]].size()>1) a.del(b[pa[x]].se());
if(c[x].size()) b[pa[x]].del(c[x].fr()); /**/
}
c[x].ins(dis(u,pa[x]));
if(pa[x]) { //update fa
b[pa[x]].ins(c[x].fr());
if(b[pa[x]].size()>1) a.ins(b[pa[x]].se());
}
x=pa[x]; /**/
}
}
void turn_on(int u){//0->1
int x=u;
if(b[x].size()>1) a.del(b[x].se());
b[x].del(0);
if(b[x].size()>1) a.ins(b[x].se());
while(x){
if(pa[x]) { //del fa
if(b[pa[x]].size()>1) a.del(b[pa[x]].se());
if(c[x].size()) b[pa[x]].del(c[x].fr()); /**/
}
c[x].del(dis(u,pa[x]));
if(pa[x]) { //update fa
if(c[x].size()) b[pa[x]].ins(c[x].fr());/**/
if(b[pa[x]].size()>1) a.ins(b[pa[x]].se());
}
x=pa[x];/**/
}
} int lon,lit[N]; int main()
{
int Q,x;
char ch[2];
n=read();
for(int i=1;i<n;i++) addedge1(read(),read()); getst();
rt=0; mx[rt]=n+1; all=n; getrt(1,0);
root=rt;
work(root); lon=0;
Q=read();
while(Q--){
scanf("%s",ch);
if(ch[0]=='C'){
x=read();
if(lit[x]) lon--,turn_off(x),lit[x]=0; /*lit*/
else lon++,turn_on(x),lit[x]=1;
}
else{
if(lon==n) printf("-1\n");
else if(lon==n-1) printf("0\n");
else printf("%d\n",a.fr());
}
} return 0;
}

[bzoj1905] [ZJOI2007] Hide 捉迷藏的更多相关文章

  1. 动态点分治:Bzoj1095: [ZJOI2007]Hide 捉迷藏

    简介 这是我自己的一点理解,可能写的不好 点分治都学过吧.. 点分治每次找重心把树重新按重心的深度重建成了一棵新的树,称为分治树 这个树最多有log层... 动态点分治:记录下每个重心的上一层重心,这 ...

  2. 【BZOJ 1095】 1095: [ZJOI2007]Hide 捉迷藏 (括号序列+线段树)

    1095: [ZJOI2007]Hide 捉迷藏 Description 捉迷藏 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩捉迷藏游戏 ...

  3. 【BZOJ1095】[ZJOI2007]Hide 捉迷藏 动态树分治+堆

    [BZOJ1095][ZJOI2007]Hide 捉迷藏 Description 捉迷藏 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩捉 ...

  4. [bzoj1095][ZJOI2007]Hide 捉迷藏 点分树,动态点分治

    [bzoj1095][ZJOI2007]Hide 捉迷藏 2015年4月20日7,8876 Description 捉迷藏 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiaji ...

  5. BZOJ_1095_[ZJOI2007]Hide 捉迷藏_动态点分治+堆

    BZOJ_1095_[ZJOI2007]Hide 捉迷藏_动态点分治+堆 Description 捉迷藏 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子 ...

  6. [ZJOI2007]Hide 捉迷藏

    Description 捉迷藏 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩 捉迷藏游戏.他们的家很大且构造很奇特,由N个屋子和N-1条 ...

  7. BZOJ1095:[ZJOI2007]Hide 捉迷藏(动态点分治)

    Description 捉迷藏 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩 捉迷藏游戏.他们的家很大且构造很奇特,由N个屋子和N-1条 ...

  8. BZOJ1095: [ZJOI2007]Hide 捉迷藏【线段树维护括号序列】【思维好题】

    Description 捉迷藏 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩 捉迷藏游戏.他们的家很大且构造很奇特,由N个屋子和N-1条 ...

  9. 「BZOJ1095」[ZJOI2007] Hide 捉迷藏

    题目描述 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩捉迷藏游戏.他们的家很大且构造很奇特,由N个屋子和N-1条双向走廊组成,这N-1条 ...

随机推荐

  1. open Live Writer 代码插件安装

    1,第一步:下载open live writer插件,下载地址:http://www.cnblogs.com/memento/p/5995173.html 2,拷贝文件到Plugins目录(自己建立) ...

  2. exp导出含有双引号的表

    由于ORACLE默认的表名都是不区分大小写,在创建表时,在数据字典中存储的表名为大写.在有些情况下,如果创建的表在表名上加上双引号("),则创建的表其表名在数据字典中不作转换.比如 SQL& ...

  3. 腾讯qlv视频转为MP4格式工具

    本文解决上一篇<优酷爱奇艺视频转换为MP4格式工具>留下的腾讯视频qlv转MP4格式问题,教程都是一步步亲手操作的,每一步都有配图.希望各位老板多转发分享,谢谢! 解压软件.(建议关闭所有 ...

  4. HTTP Error 502.5 - ANCM Out-Of-Process Startup Failure

    问题: 原因:一般来说是由于.NET Core SDK的版本引起的,此时需要观察项目的所需的版本和本地存在的板本是否一致. 本例中,项目所需的版本是2.2如下图所示 本地存在的版本如下图所示,是不存在 ...

  5. python全栈学习 day03

    换行符: \n 制表符: \t 字符串截取:顾头不顾尾 s[首:尾:步长] 首--->尾走向 和 步长方向一致 s[0:4:2] s[4:0:-2] a = "qwertyui&quo ...

  6. npm常用模块之chai使用

    更多npm常用模块使用请访问:npm常用模块汇总 chai这是一款用于节点和浏览器的BDD / TDD断言库,可以与任何javascript测试框架完美地配对. 更多使用文档请点击访问chai工具官网 ...

  7. UVA10791-Minimum Sum LCM(唯一分解定理基本应用)

    原题:https://vjudge.net/problem/UVA-10791 基本思路:1.借助唯一分解定理分解数据.2.求和输出 知识点:1.筛法得素数 2.唯一分解定理模板代码 3.数论分析-唯 ...

  8. Tomcat 后台war部署上传shell

    tomcat的后台登录的两个目录为: /admin /manager/html 如果版本过高,只有采用弱密码的方式进后台: 有些tomcat采用默认的用户名和密码(用户名:admin,密码:空): 或 ...

  9. python三器

    1.1 装饰器 1.装饰器的作用 1. 装饰器作用:本质是函数(装饰其他函数)就是为其他函数添加其他功能 2. 装饰器必须准寻得原则: 1)不能修改被装饰函数的源代码 2)不能修改被装饰函数的调用方式 ...

  10. Linux开机加载过程

    2015-01-06 10:29:13   目录 1 开机加载简介 2 常规加载流程 2.1 加载BIOS 2.2 读取MBR 2.3 boot loader 2.4 加载内核 2.5 init依据i ...