[bzoj2668] [洛谷P3159] [cqoi2012] 交换棋子
Description###
有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态。要求第i行第j列的格子只能参与mi,j次交换。
Input###
第一行包含两个整数n,m(1<=n, m<=20)。以下n行为初始状态,每行为一个包含m个字符的01串,其中0表示黑色棋子,1表示白色棋子。以下n行为目标状态,格式同初始状态。以下n行每行为一个包含m个0~9数字的字符串,表示每个格子参与交换的次数上限。
Output###
输出仅一行,为最小交换总次数。如果无解,输出-1。
Sample Input###
3 3
110
000
001
000
110
100
222
222
222
Sample Output###
4
想法##
首先把题目说的不清楚的地方澄清一下:“第i行第j列的格子只能参与mi,j次交换”所说第i行第j列的棋子指的是每次交换后位于第i行第j列这个位置的棋子,可以是多个,而不是指最原始状态中第i行第j列那个特定的棋子。
很容易发现,我们可以只考虑白色棋子,只要它们都移动到目标状态,剩下的黑棋子也都到目标状态了。
不停地交换听起来好像比较棘手,但其实白棋子只有和身边的黑棋子交换位置才有用。
所以我们就是要给每个白棋子规划一条线路,让它们从原始位置变到目标位置。
很容易想到按原图建图,拆点~
但有个问题,若某个白格子经过某个格子,那么这个格子会被该白格子交换两次;而白格子原位置与目标位置只会被该白格子交换一次。
于是有一个更高级的拆点:一个点拆成三个!(id1,id2,id3)
id1到id2限制其他点与这个点交换的次数,id2到id3限制这个点与其他点交换的次数(即一个是进入的流量,一个是出去的流量)
建图,分类讨论。
- 对于原状态和目标状态均为黑的格子。
id1到id3连容量为cap/2,费用为1的边 - 对于原状态为白,目标状态为黑的格子。
S到id2连容量为1,费用为0的边
id1到id2连容量为cap/2,费用为1的边
id2到id3连容量为(cap+1)/2,费用为1的边 - 对于原状态为黑,目标状态为白的格子。
id2到T连容量为1,费用为0的边
id1到id2连容量为(cap+1)/2,费用为1的边
id2到id3连容量为cap/2,费用为1的边 - 对于原状态和目标状态均为白的格子。
S到id2连容量为1,费用为0的边
id2到T连容量为1,费用为0的边
id1到id2连容量为cap/2,费用为1的边
id2到id3连容量为cap/2,费用为1的边
之后向八连通的格子连边。
注意是某格子的id1连向八连通格子的id3,然后八连通的id1连向这个格子的id3
。。。还是有点复杂的。
接下来就跑个最小费用最大流,看流量是否为总白格子数。
若不是,则输出-1,否则答案为 最小费用/2
代码##
注意细节:
1.某些边的容量为(cap+1)/2,容易想错写成cap/2
2.数组要开够!!
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<queue>
#define INF 1000000000
using namespace std;
const int N = 405;
const int M = 1205;
struct node{
int v,f,c;
node *next,*rev;
}pool[N*40],*h[M],*pree[M]; /**/
int cnt;
void addedge(int u,int v,int f,int c){
node *p=&pool[++cnt],*q=&pool[++cnt];
p->v=v;p->next=h[u];h[u]=p; p->f=f;p->c=c;p->rev=q;
q->v=u;q->next=h[v];h[v]=q; q->f=0;q->c=-c;q->rev=p;
}
int S,T;
int d[M],vis[M],pre[M];
queue<int> que;
bool spfa(){
int u,v;
while(!que.empty()) que.pop();
for(int i=S;i<=T;i++) d[i]=INF;
d[S]=0; vis[S]=1; que.push(S);
while(!que.empty()){
u=que.front(); que.pop();
vis[u]=0;
for(node *p=h[u];p;p=p->next)
if(p->f && d[v=p->v]>d[u]+p->c){
d[v]=d[u]+p->c;
pre[v]=u; pree[v]=p;
if(!vis[v]){
vis[v]=1;
que.push(v);
}
}
}
return d[T]!=INF;
}
void MCMF(int &f,int &c){
f=0; c=0;
int u,w;
while(spfa()){
u=T; w=INF;
while(u!=S){
w=min(w,pree[u]->f);
u=pre[u];
}
f+=w; c+=d[T]*w;
u=T;
while(u!=S){
pree[u]->f-=w;
pree[u]->rev->f+=w;
u=pre[u];
}
}
}
int n,m;
char a[23][23],b[23][23],ch[23][23];
int dre[8][2]={-1,-1,-1,0,-1,1,0,-1,0,1,1,-1,1,0,1,1};
int main()
{
scanf("%d%d",&n,&m);
for(int i=0;i<n;i++) scanf("%s",a[i]);
for(int i=0;i<n;i++) scanf("%s",b[i]);
for(int i=0;i<n;i++) scanf("%s",ch[i]);
int w=n*m,id1,id2,id3,tot=0;
S=0; T=w*3+1;
for(int i=0;i<n;i++)
for(int j=0;j<m;j++){
id1=i*m+j+1; id2=id1+w; id3=id2+w;
if(a[i][j]=='0' && b[i][j]=='0')
addedge(id1,id3,(ch[i][j]-'0')/2,2);
else if(a[i][j]=='1' && b[i][j]=='0'){
tot++;
addedge(S,id2,1,0);
addedge(id1,id2,(ch[i][j]-'0')/2,1);
addedge(id2,id3,(ch[i][j]-'0'+1)/2,1); /**/
}
else if(a[i][j]=='0' && b[i][j]=='1'){
addedge(id2,T,1,0);
addedge(id1,id2,(ch[i][j]-'0'+1)/2,1); /**/
addedge(id2,id3,(ch[i][j]-'0')/2,1);
}
else{
tot++;
addedge(S,id2,1,0); addedge(id2,T,1,0);
addedge(id1,id2,(ch[i][j]-'0')/2,1);
addedge(id2,id3,(ch[i][j]-'0')/2,1);
}
for(int k=0;k<8;k++){
int x=i+dre[k][0],y=j+dre[k][1];
if(x>=0 && x<n && y>=0 && y<m){
addedge(id3,x*m+y+1,INF,0);
addedge(x*m+y+1+2*w,id1,INF,0);
}
}
}
int f,c;
MCMF(f,c);
if(f<tot) printf("-1\n");
else printf("%d",c/2);
return 0;
}
[bzoj2668] [洛谷P3159] [cqoi2012] 交换棋子的更多相关文章
- 洛谷P3159 [CQOI2012]交换棋子
巧妙的拆点方式,首先把1看成黑点,0看成空的,几次交换就可以看成一条路径 1)从容量上看,这条路径为1-2-2-2-2-2----2-1 2)从费用上看,这条路径每条边费用都是1 于是用一种巧妙的拆点 ...
- P3159 [CQOI2012]交换棋子
思路 相当神奇的费用流拆点模型 最开始我想到把交换黑色棋子看成一个流流动的过程,流从一个节点流向另一个节点就是交换两个节点,然后把一个位置拆成两个点限制流量,然后就有了这样的建图方法 S向所有初始是黑 ...
- 【BZOJ2668】[cqoi2012]交换棋子 费用流
[BZOJ2668][cqoi2012]交换棋子 Description 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列 ...
- BZOJ2668: [cqoi2012]交换棋子
题解: 可以戳这里:http://www.cnblogs.com/zig-zag/archive/2013/04/21/3033485.html 其实自己yy一下就知道这样建图的正确性了. 感觉太神奇 ...
- BZOJ 2668: [cqoi2012]交换棋子
2668: [cqoi2012]交换棋子 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1112 Solved: 409[Submit][Status ...
- [cqoi2012]交换棋子
2668: [cqoi2012]交换棋子 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1334 Solved: 518[Submit][Stat ...
- [洛谷P3158] [CQOI2011]放棋子
洛谷题目链接:[CQOI2011]放棋子 题目描述 在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同 颜色的棋子不能在同一行或者同一列.有多少祌方法?例如,n=m=3,有两个 ...
- 洛谷 P3182 [HAOI2016]放棋子(高精度,错排问题)
传送门 解题思路 不会错排问题的请移步——错排问题 && 洛谷 P1595 信封问题 这一道题其实就是求对于每一行的每一个棋子都放在没有障碍的地方的方案数. 因为障碍是每行.每列只有一 ...
- 洛谷P3158 [CQOI2011]放棋子 组合数学+DP
题意:在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同颜色的棋子不能在同一行或者同一列.有多少祌方法? 解法:这道题不会做,太菜了qwq.题解是看洛谷大佬的. 设C是组合数, ...
随机推荐
- Vue中qs插件的使用
qs 是一个增加了一些安全性的查询字符串解析和序列化字符串的库. 在项目中使用命令行工具输入:npm install qs安装完成后在需要用到的组件中:import qs from ‘qs’具体使用中 ...
- Linux 标准 C 类型的使用
尽管大部分程序员习惯自由使用标准类型, 如 int 和 long, 编写设备驱动需要一些小心 来避免类型冲突和模糊的 bug. 这个问题是你不能使用标准类型, 当你需要"一个 2-字节 填充 ...
- Linux 内核硬件抽象
我们结束 PCI 的讨论, 通过快速看一下系统如何处理在市场上的多种 PCI 控制器. 这只 是一个信息性的小节, 打算来展示给好奇的读者, 内核的面向对象分布如何向下扩展到最 低层. 用来实现硬件抽 ...
- 2019-1-29-UWP-IRandomAccessStream-与-Stream-互转
title author date CreateTime categories UWP IRandomAccessStream 与 Stream 互转 lindexi 2019-01-29 16:33 ...
- vuejs 数据视图不更新
由于 JavaScript 的限制,Vue 不能检测对象属性的添加或删除 可以使用 Vue.set(object, key, value) 方法向嵌套对象添加响应式属性 数组 this.$set(ar ...
- Cannot destructure property `createHash` of 'undefined' or 'null'(next服务端渲染引入next-less错误).
next中引入@zeit/next-less因next版本过低(webpack4之前的版本)无法执行next-less内置的mini-css-extract-plugin mini-css-extra ...
- 牛客wannafly 挑战赛14 B 前缀查询(trie树上dfs序+线段树)
牛客wannafly 挑战赛14 B 前缀查询(trie树上dfs序+线段树) 链接:https://ac.nowcoder.com/acm/problem/15706 现在需要您来帮忙维护这个名册, ...
- C++,Windows/MFC_中L和_T()之区别
字符串前面加L表示该字符串是Unicode字符串._T是一个宏,如果项目使用了Unicode字符集(定义了UNICODE宏),则自动在字符串前面加上L,否则字符串不变.因此,Visual C++里边定 ...
- 第二阶段:4.产品功能需求文档PRD:7.案例总结
Dev就是一些开发 这就是一个评价表格 每次沟通都要记得记录以及总结反思
- 事件驱动框架EventNext之线程容器
EventNext是.net core下的一个事件驱动的应用框架,通过它代理创建的接口行为都是通过事件驱动的模式进行调用.由于EventNext的所有调用都是基于事件队列来进行,所以在资源控制上非常方 ...