Graph Transformer Networks 论文分享
论文地址:https://arxiv.org/abs/1911.06455
实现代码地址:https://github.com/ seongjunyun/Graph_Transformer_Networks
看分享之前可以把论文读一遍,代码看一看,这样必定会事半功倍!
### 论文目的是通过构造GTN(Graph Transformer Networks),来学习到异构网络中有效的节点表示。
### 其他现有方法(GNNs)的缺点:
1. 对于异构图,由于GNN只用于处理同构图,因此效果不好。

2. 一种简单的处理方法就是忽略类型,缺点就是无法获取到类型信息。
3. 手动设计一个meta-path,例如,将异构图转化由meta-path定义的同构图,然后使用GNN进行操作。方法的缺点是:对于每一个问题都需要单独的手工设计meta-path;并且最终效果受到选择meta-path的影响;meta-path的选择需要对应领域知识。
### 整体框架
1. meta-path的表示:
一条路径:,则= *
#### 卷积层

代码:
A 的size:
W的size:



#### GT层
在GT层中,使用了类似于stack的结构

代码

解决meta-path长度随层数的增加而增加问题:
### GTN

代码


gcn_conv:

#### 实验

将模型生成的meta-path同预定义的meta-path相比较:

meta-path有效性

### 本文的亮点
1. 不需要领域知识,不需要手动设置meta-path,GTN通过候选邻接矩阵来定义有效的meta-paths。
2. 可扩展性强。
Graph Transformer Networks 论文分享的更多相关文章
- 论文解读(DAGNN)《Towards Deeper Graph Neural Networks》
论文信息 论文标题:Towards Deeper Graph Neural Networks论文作者:Meng Liu, Hongyang Gao, Shuiwang Ji论文来源:2020, KDD ...
- 论文解读(LA-GNN)《Local Augmentation for Graph Neural Networks》
论文信息 论文标题:Local Augmentation for Graph Neural Networks论文作者:Songtao Liu, Hanze Dong, Lanqing Li, Ting ...
- 论文解读(GraphSMOTE)《GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks》
论文信息 论文标题:GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks论文作者:Tianxi ...
- 论文解读(KP-GNN)《How Powerful are K-hop Message Passing Graph Neural Networks》
论文信息 论文标题:How Powerful are K-hop Message Passing Graph Neural Networks论文作者:Jiarui Feng, Yixin Chen, ...
- 论文解读(soft-mask GNN)《Soft-mask: Adaptive Substructure Extractions for Graph Neural Networks》
论文信息 论文标题:Soft-mask: Adaptive Substructure Extractions for Graph Neural Networks论文作者:Mingqi Yang, Ya ...
- 论文解读(ChebyGIN)《Understanding Attention and Generalization in Graph Neural Networks》
论文信息 论文标题:Understanding Attention and Generalization in Graph Neural Networks论文作者:Boris Knyazev, Gra ...
- 论文解读(GATv2)《How Attentive are Graph Attention Networks?》
论文信息 论文标题:How Attentive are Graph Attention Networks?论文作者:Shaked Brody, Uri Alon, Eran Yahav论文来源:202 ...
- 谣言检测(ClaHi-GAT)《Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks》
论文信息 论文标题:Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks论文作者:Erx ...
- [论文理解] Spatial Transformer Networks
Spatial Transformer Networks 简介 本文提出了能够学习feature仿射变换的一种结构,并且该结构不需要给其他额外的监督信息,网络自己就能学习到对预测结果有用的仿射变换.因 ...
随机推荐
- java 利用反射创建对象
创建对象: 1.使用Class对象的newInstance()方法创建该Class对象的实例,此时该Class对象必须要有无参数的构造方法. 2.使用Class对象获取指定的Constructor对象 ...
- P1021 整数奇偶排序
整数奇偶排序 题目出处:<信息学奥赛一本通>第二章上机练习6,略有改编 题目描述 告诉你包含 \(n\) 个数的数组 \(a\) ,你需要把他们按照"奇数排前面,偶数排后面:奇数 ...
- CKEditor配置,最适合新手两种方式详解。
CKEditor.js的配置,大概有两种方式,这里有基础版和全面的版本可以试验 https://cdn.ckeditor.com/4.8.0/full-all/ckeditor.js http://c ...
- 网上做题随笔--MySql
网上写写题 提高下自己的能力. Mysql平时写的是真的很少,所以训练一下下. 1.查找重复的电子邮箱 https://leetcode-cn.com/problems/duplicate-email ...
- 【矩阵乘法优化dp】[Codeforces 621E] Wet Shark and Blocks
http://codeforces.com/problemset/problem/621/E E. Wet Shark and Blocks time limit per test 2 seconds ...
- wireshark使用心得 centos7安装wireshark: yum install wireshark wireshark-gnome
centos7 安装wireshark 安装 yum install wireshark yum install wireshark-gnome 关于pcap文件的文件解析网上资料有很多,我在这就不说 ...
- lumen简单使用exel组件
1.首先打开命令行,进入到lumen项目的根目录中,然后用composer下载excel组件 composer require maatwebsite/excel ~2.1.0 2.安装成功后,在bo ...
- [梁山好汉说IT] 区块链在梁山的应用
[梁山好汉说IT] 区块链在梁山的应用 0x00 摘要 区块链属于一种去中心分布式数据存储系统,有其擅长的应用场景,也有其缺点. 下面用梁山为例来阐释下区块链部分概念&应用. 0x01 梁山好 ...
- Mac常用的软件推荐
Alfred 效率软件,让能更快的启动各种软件 VScode 编辑器,市面上最热的编辑器,好用的不只是一点点,加上Vim插件简直就是秒杀市面上各种IDE PicGo 一个开源图床软件,支持各大网站的图 ...
- shell脚本查找tcp过多ip地址封掉
#!/bin/bash #hc source /etc/profile iplist=`netstat -ntu | awk '{print $5}'| cut -d':' -f1| sort |un ...