论文地址:https://arxiv.org/abs/1911.06455
实现代码地址:https://github.com/ seongjunyun/Graph_Transformer_Networks
看分享之前可以把论文读一遍,代码看一看,这样必定会事半功倍!

### 论文目的是通过构造GTN(Graph Transformer Networks),来学习到异构网络中有效的节点表示。

### 其他现有方法(GNNs)的缺点:

1. 对于异构图,由于GNN只用于处理同构图,因此效果不好。

![](https://img2018.cnblogs.com/blog/1277792/202001/1277792-20200118125733747-960185554.png)

2. 一种简单的处理方法就是忽略类型,缺点就是无法获取到类型信息。

3. 手动设计一个meta-path,例如![](https://img2018.cnblogs.com/blog/1277792/202001/1277792-20200118125733992-1510873301.png),将异构图转化由meta-path定义的同构图,然后使用GNN进行操作。方法的缺点是:对于每一个问题都需要单独的手工设计meta-path;并且最终效果受到选择meta-path的影响;meta-path的选择需要对应领域知识。

### 整体框架

1. meta-path的表示:

一条路径:![](https://img2018.cnblogs.com/blog/1277792/202001/1277792-20200118125734233-779406818.png),则![](https://img2018.cnblogs.com/blog/1277792/202001/1277792-20200118125734433-1593186190.png)= ![](https://img2018.cnblogs.com/blog/1277792/202001/1277792-20200118125734617-1222163259.png)*![](https://img2018.cnblogs.com/blog/1277792/202001/1277792-20200118125734810-596595059.png)

#### 卷积层

![](https://img2018.cnblogs.com/blog/1277792/202001/1277792-20200118125735076-1449969793.png)

代码:

A 的size:![](https://img2018.cnblogs.com/blog/1277792/202001/1277792-20200118125735301-918259361.png)

W的size:![](https://img2018.cnblogs.com/blog/1277792/202001/1277792-20200118125735499-300814642.png)

![](https://img2018.cnblogs.com/blog/1277792/202001/1277792-20200118125736040-400755517.png)

![](https://img2018.cnblogs.com/blog/1277792/202001/1277792-20200118125736289-29485225.png)

![](https://img2018.cnblogs.com/blog/1277792/202001/1277792-20200118125736474-351259532.png)

#### GT层

在GT层中,使用了类似于stack的结构

![](https://img2018.cnblogs.com/blog/1277792/202001/1277792-20200118125736970-37475547.png)

代码

![](https://img2018.cnblogs.com/blog/1277792/202001/1277792-20200118125738868-1955849713.png)

解决meta-path长度随层数的增加而增加问题:![](https://img2018.cnblogs.com/blog/1277792/202001/1277792-20200118125739391-972820468.png)

### GTN

![](https://img2018.cnblogs.com/blog/1277792/202001/1277792-20200118125739955-1353487658.png)

代码

![](https://img2018.cnblogs.com/blog/1277792/202001/1277792-20200118125740438-944463192.png)

![](https://img2018.cnblogs.com/blog/1277792/202001/1277792-20200118125741887-2065348801.png)

gcn_conv:

![](https://img2018.cnblogs.com/blog/1277792/202001/1277792-20200118125742427-1495904961.png)

#### 实验

![](https://img2018.cnblogs.com/blog/1277792/202001/1277792-20200118125743197-21888419.png)

将模型生成的meta-path同预定义的meta-path相比较:

![](https://img2018.cnblogs.com/blog/1277792/202001/1277792-20200118125743829-1002567197.png)

meta-path有效性

![](https://img2018.cnblogs.com/blog/1277792/202001/1277792-20200118125745951-831401986.png)

### 本文的亮点

1. 不需要领域知识,不需要手动设置meta-path,GTN通过候选邻接矩阵来定义有效的meta-paths。
2. 可扩展性强。

Graph Transformer Networks 论文分享的更多相关文章

  1. 论文解读(DAGNN)《Towards Deeper Graph Neural Networks》

    论文信息 论文标题:Towards Deeper Graph Neural Networks论文作者:Meng Liu, Hongyang Gao, Shuiwang Ji论文来源:2020, KDD ...

  2. 论文解读(LA-GNN)《Local Augmentation for Graph Neural Networks》

    论文信息 论文标题:Local Augmentation for Graph Neural Networks论文作者:Songtao Liu, Hanze Dong, Lanqing Li, Ting ...

  3. 论文解读(GraphSMOTE)《GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks》

    论文信息 论文标题:GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks论文作者:Tianxi ...

  4. 论文解读(KP-GNN)《How Powerful are K-hop Message Passing Graph Neural Networks》

    论文信息 论文标题:How Powerful are K-hop Message Passing Graph Neural Networks论文作者:Jiarui Feng, Yixin Chen, ...

  5. 论文解读(soft-mask GNN)《Soft-mask: Adaptive Substructure Extractions for Graph Neural Networks》

    论文信息 论文标题:Soft-mask: Adaptive Substructure Extractions for Graph Neural Networks论文作者:Mingqi Yang, Ya ...

  6. 论文解读(ChebyGIN)《Understanding Attention and Generalization in Graph Neural Networks》

    论文信息 论文标题:Understanding Attention and Generalization in Graph Neural Networks论文作者:Boris Knyazev, Gra ...

  7. 论文解读(GATv2)《How Attentive are Graph Attention Networks?》

    论文信息 论文标题:How Attentive are Graph Attention Networks?论文作者:Shaked Brody, Uri Alon, Eran Yahav论文来源:202 ...

  8. 谣言检测(ClaHi-GAT)《Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks》

    论文信息 论文标题:Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks论文作者:Erx ...

  9. [论文理解] Spatial Transformer Networks

    Spatial Transformer Networks 简介 本文提出了能够学习feature仿射变换的一种结构,并且该结构不需要给其他额外的监督信息,网络自己就能学习到对预测结果有用的仿射变换.因 ...

随机推荐

  1. H3C HDLC配置

  2. mysql 第三课 jdbc基础操作

    jdbc连接可以大致分为5步: 1.注册驱动 2.获取连接 3.编写语句 4.执行语句 5.关闭连接 其中可以设置参数等等. 1.我们先建一个项目目录: 其中com.etc.dao为数据访问对象 co ...

  3. Notice: Use of undefined constant - assumed ' '

    昨天看手册的时候有两个范例,懒得写了,直接复制,测试一下,结果报Notice; 反复检查无果,最后, 手动敲了一遍,居然正常了,汗.... 总结:偷懒害人

  4. 2018-8-10-win10-uwp-绘图--Line-控件使用

    title author date CreateTime categories win10 uwp 绘图 Line 控件使用 lindexi 2018-08-10 19:16:51 +0800 201 ...

  5. the password has expired

    Oracle提示错误消息ORA-28001: the password has expired,是由于Oracle11G的新特性所致, Oracle11G创建用户时缺省密码过期限制是180天(即6个月 ...

  6. testng+ant+jenkins持续集成UI自动化

    一.环境搭建 1. 安装testNG插件到eclipse. -) 选择菜单 Help /Software updates / Find and Install. -) 点击add button然后在l ...

  7. vue-learning:1 - 为什么选择vue

    为什么选择Vue 通过一个对比,展示vue框架的优势: 需求:根据请求后端接口返回的数据列表,渲染在页面中. 传统上我们使用jQuery的Ajax发送http请求,获取数据.判断列表数据是否存在,如果 ...

  8. spring的69个问题

    1.什么是Spring? Spring是一个开源的Java EE开发框架.Spring框架的核心功能可以应用在任何Java应用程序中,但对Java EE平台上的Web应用程序有更好的扩展性.Sprin ...

  9. 牛客多校第三场 F Planting Trees

    牛客多校第三场 F Planting Trees 题意: 求矩阵内最大值减最小值大于k的最大子矩阵的面积 题解: 矩阵压缩的技巧 因为对于我们有用的信息只有这个矩阵内的最大值和最小值 所以我们可以将一 ...

  10. Python_全局变量的定义

    1.在my套件下新建一个关键字systemkey并进行脚本的编写:创建一个${var1}变量,并赋值为aaaaaaaaaa Set Global Variable        ${var1}    ...