区间dp - 不连续的回文串
The rabbits jumped from one stone to another. Tom always jumped clockwise, and Jerry always jumped anticlockwise.
At the beginning, the rabbits both choose a stone and stand on it.
Then at each turn, Tom should choose a stone which have not been stepped
by itself and then jumped to it, and Jerry should do the same thing as
Tom, but the jumping direction is anti-clockwise.
For some unknown reason, at any time , the weight of the two stones
on which the two rabbits stood should be equal. Besides, any rabbit
couldn't jump over a stone which have been stepped by itself. In other
words, if the Tom had stood on the second stone, it cannot jump from the
first stone to the third stone or from the n-the stone to the 4-th
stone.
Please note that during the whole process, it was OK for the two rabbits to stand on a same stone at the same time.
Now they want to find out the maximum turns they can play if they follow the optimal strategy.
For each test cases, the first line contains a integer n denoting the number of stones.
The next line contains n integers separated by space, and the i-th
integer ai denotes the weight of the i-th stone.(1 <= n <= 1000, 1
<= ai <= 1000)
The input ends with n = 0.OutputFor each test case, print a integer denoting the maximum turns.Sample Input
1
1
4
1 1 2 1
6
2 1 1 2 1 3
0
Sample Output
1
4
5
Hint
For the second case, the path of the Tom is 1, 2, 3, 4, and the path of Jerry is 1, 4, 3, 2.
For the third case, the path of Tom is 1,2,3,4,5 and the path of Jerry is 4,3,2,1,5.
题意 : 给你一个环形的串,上面写有一些数字,两只兔子向着相反的方向去跳,任意选择起点,并且要求每一轮两只兔子所占的数字是相同,问最多能进行几轮?
思路分析:其实就是让求一个最长回文的串,对于环的话,我们可以将长度拉直并延伸一倍,对新的串求区间内的回文,比较好写,然后就是在 dp求完任意一个区间内的最长回文串后,我们需要做的就是枚举下区间的头,判断一下长度为 n的区间内的最长回文串的长度最长是多少
代码示例:
int n;
int pre[2005];
int dp[2005][2005]; int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout); while(~scanf("%d", &n) && n){
for(int i = 1; i <= n; i++){
scanf("%d", &pre[i]);
pre[n+i] = pre[i];
}
memset(dp, 0, sizeof(dp));
for(int i = 1; i <= 2*n; i++) dp[i][i] = 1; for(int len = 2; len <= n; len++){
for(int i = 1; i <= 2*n; i++){
int j = i+len-1;
if (j > 2*n) break;
if (pre[i] == pre[j]) dp[i][j] = dp[i+1][j-1]+2;
else dp[i][j] = max(dp[i+1][j], dp[i][j-1]);
}
}
int ans = 0;
for(int i = 1; i <= n; i++) ans = max(ans, dp[i][i+n-1]); // 不共起点
for(int i = 1; i <= n; i++) ans = max(ans, dp[i][i+n-2]+1); // 共起点
printf("%d\n", ans);
}
return 0;
}
区间dp - 不连续的回文串的更多相关文章
- Palindromic characteristics CodeForces - 835D (区间DP,预处理回文串问题)
Palindromic characteristics of string s with length |s| is a sequence of |s|integers, where k-th num ...
- HDU5658:CA Loves Palindromic (回文树,求区间本质不同的回文串数)
CA loves strings, especially loves the palindrome strings. One day he gets a string, he wants to kno ...
- 【区间DP】低价回文
[区间DP]低价回文 标签(空格分隔): 区间DP 回文词 [题目描述] 追踪每头奶牛的去向是一件棘手的任务,为此农夫约翰安装了一套自动系统.他在每头牛身上安装了一个电子身份标签,当奶牛通过扫描器的时 ...
- 区间dp(低价回文)
[题目大意] 追踪每头奶牛的去向是一件棘手的任务,为此农夫约翰安装了一套自动系统.他在每头牛身上安装了一个电子身份标签,当奶牛通过扫描器的时候,系统可以读取奶牛的身份信息.目前,每个身份都是由一个字符 ...
- 区间dp最长回文子序列问题
状态转移方程如下: 当i > j时,dp[i,j]= 0. 当i = j时,dp[i,j] = 1. 当i < j并且str[i] == str[j]时,dp[i][j] = dp[i+1 ...
- manacher算法——回文串计算的高效算法
manacher算法的由来不再赘述,自行百度QWQ... 进入正题,manacher算法是一个高效的计算回文串的算法,回文串如果不知道可以给出一个例子:" noon ",这样应该就 ...
- HDU 4632 Palindrome subsequence(区间dp,回文串,字符处理)
题目 参考自博客:http://blog.csdn.net/u011498819/article/details/38356675 题意:查找这样的子回文字符串(未必连续,但是有从左向右的顺序)个数. ...
- POJ 3280 Cheapest Palindrome(区间DP求改成回文串的最小花费)
题目链接:http://poj.org/problem?id=3280 题目大意:给你一个字符串,你可以删除或者增加任意字符,对应有相应的花费,让你通过这些操作使得字符串变为回文串,求最小花费.解题思 ...
- CodeForces-245H:Queries for Number of Palindromes(3-14:区间DP||回文串)
Times:5000ms: Memory limit:262144 kB 给定字符串S(|S|<=5000),下标由1开始.然后Q个问题(Q<=1e6),对于每个问题,给定L,R,回答区间 ...
随机推荐
- Github开源人脸识别项目face_recognition
Github开源人脸识别项目face_recognition 原文:https://www.jianshu.com/p/0b37452be63e 译者注: 本项目face_recognition是一个 ...
- There is no PasswordEncoder mapped for the id "null"的解决办法
今日在SpringBoot项目中使用 Spring Security ,登录时发现报500错,报错信息如下: There is no PasswordEncoder mapped for the id ...
- 2018-9-3-C#-const-和-readonly-有什么区别
title author date CreateTime categories C# const 和 readonly 有什么区别 lindexi 2018-9-3 16:52:7 +0800 201 ...
- 在js中arguments对象的理解
一.在函数调用的时候,浏览器每次都会传递进两个隐式参数 函数的上下文对象this 封装实参的对象arguments 二.arguments 对象 arguments 对象实际上是所在函数的一个内置类数 ...
- JavaScript 面向对象的拖拽
一.body <div id="box"></div> 二.css <style> #box { position: abaolute; top ...
- WPF TreeView 展开到指定节点
最近在做一个交换机管理的项目,有一个交换机的树,做树的搜索的时候 展开节点居然有点难,自己记录下来 ,以后用的到的时候可以看一下. 展开代码如下,其中 SwitchTree是treeview空间的名称 ...
- SpringBoot2启动流程分析
首先上一张图,图片来自 SpringBoot启动流程解析 本文基于spring-boot-2.0.4.RELEASE.jar包分析. 程序启动入口 public static void main(St ...
- Delphi XE里的StrPas要注意哦(要让StrPas知道哪里是字符串结束)
废话不多说了,直接上例子解说: procedure TForm1.Button1Click(Sender: TObject);var aa: array[0..1]of AnsiChar; bb1 ...
- 异步加载css 和 谷歌浏览器各实用小工具介绍
异步加载css资源 加开页面首屏显示速度使我们前端一直在追求的目标,而css资源在这些优化中同样也是不可或缺的. 一个网站可能有一部分css资源是必须的,他需要在页面渲染完之前就被加载完,并和html ...
- Linux基础:CentOS 6重置密码
1.开机,按"e"键,进入GNU GRUB引导界面,上下键选择中间行 2.按"e"键,进入编辑界面,末行quiet后空格,输入"1"或者&q ...