区间dp - 不连续的回文串
The rabbits jumped from one stone to another. Tom always jumped clockwise, and Jerry always jumped anticlockwise.
At the beginning, the rabbits both choose a stone and stand on it.
Then at each turn, Tom should choose a stone which have not been stepped
by itself and then jumped to it, and Jerry should do the same thing as
Tom, but the jumping direction is anti-clockwise.
For some unknown reason, at any time , the weight of the two stones
on which the two rabbits stood should be equal. Besides, any rabbit
couldn't jump over a stone which have been stepped by itself. In other
words, if the Tom had stood on the second stone, it cannot jump from the
first stone to the third stone or from the n-the stone to the 4-th
stone.
Please note that during the whole process, it was OK for the two rabbits to stand on a same stone at the same time.
Now they want to find out the maximum turns they can play if they follow the optimal strategy.
For each test cases, the first line contains a integer n denoting the number of stones.
The next line contains n integers separated by space, and the i-th
integer ai denotes the weight of the i-th stone.(1 <= n <= 1000, 1
<= ai <= 1000)
The input ends with n = 0.OutputFor each test case, print a integer denoting the maximum turns.Sample Input
1
1
4
1 1 2 1
6
2 1 1 2 1 3
0
Sample Output
1
4
5
Hint
For the second case, the path of the Tom is 1, 2, 3, 4, and the path of Jerry is 1, 4, 3, 2.
For the third case, the path of Tom is 1,2,3,4,5 and the path of Jerry is 4,3,2,1,5.
题意 : 给你一个环形的串,上面写有一些数字,两只兔子向着相反的方向去跳,任意选择起点,并且要求每一轮两只兔子所占的数字是相同,问最多能进行几轮?
思路分析:其实就是让求一个最长回文的串,对于环的话,我们可以将长度拉直并延伸一倍,对新的串求区间内的回文,比较好写,然后就是在 dp求完任意一个区间内的最长回文串后,我们需要做的就是枚举下区间的头,判断一下长度为 n的区间内的最长回文串的长度最长是多少
代码示例:
int n;
int pre[2005];
int dp[2005][2005]; int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout); while(~scanf("%d", &n) && n){
for(int i = 1; i <= n; i++){
scanf("%d", &pre[i]);
pre[n+i] = pre[i];
}
memset(dp, 0, sizeof(dp));
for(int i = 1; i <= 2*n; i++) dp[i][i] = 1; for(int len = 2; len <= n; len++){
for(int i = 1; i <= 2*n; i++){
int j = i+len-1;
if (j > 2*n) break;
if (pre[i] == pre[j]) dp[i][j] = dp[i+1][j-1]+2;
else dp[i][j] = max(dp[i+1][j], dp[i][j-1]);
}
}
int ans = 0;
for(int i = 1; i <= n; i++) ans = max(ans, dp[i][i+n-1]); // 不共起点
for(int i = 1; i <= n; i++) ans = max(ans, dp[i][i+n-2]+1); // 共起点
printf("%d\n", ans);
}
return 0;
}
区间dp - 不连续的回文串的更多相关文章
- Palindromic characteristics CodeForces - 835D (区间DP,预处理回文串问题)
Palindromic characteristics of string s with length |s| is a sequence of |s|integers, where k-th num ...
- HDU5658:CA Loves Palindromic (回文树,求区间本质不同的回文串数)
CA loves strings, especially loves the palindrome strings. One day he gets a string, he wants to kno ...
- 【区间DP】低价回文
[区间DP]低价回文 标签(空格分隔): 区间DP 回文词 [题目描述] 追踪每头奶牛的去向是一件棘手的任务,为此农夫约翰安装了一套自动系统.他在每头牛身上安装了一个电子身份标签,当奶牛通过扫描器的时 ...
- 区间dp(低价回文)
[题目大意] 追踪每头奶牛的去向是一件棘手的任务,为此农夫约翰安装了一套自动系统.他在每头牛身上安装了一个电子身份标签,当奶牛通过扫描器的时候,系统可以读取奶牛的身份信息.目前,每个身份都是由一个字符 ...
- 区间dp最长回文子序列问题
状态转移方程如下: 当i > j时,dp[i,j]= 0. 当i = j时,dp[i,j] = 1. 当i < j并且str[i] == str[j]时,dp[i][j] = dp[i+1 ...
- manacher算法——回文串计算的高效算法
manacher算法的由来不再赘述,自行百度QWQ... 进入正题,manacher算法是一个高效的计算回文串的算法,回文串如果不知道可以给出一个例子:" noon ",这样应该就 ...
- HDU 4632 Palindrome subsequence(区间dp,回文串,字符处理)
题目 参考自博客:http://blog.csdn.net/u011498819/article/details/38356675 题意:查找这样的子回文字符串(未必连续,但是有从左向右的顺序)个数. ...
- POJ 3280 Cheapest Palindrome(区间DP求改成回文串的最小花费)
题目链接:http://poj.org/problem?id=3280 题目大意:给你一个字符串,你可以删除或者增加任意字符,对应有相应的花费,让你通过这些操作使得字符串变为回文串,求最小花费.解题思 ...
- CodeForces-245H:Queries for Number of Palindromes(3-14:区间DP||回文串)
Times:5000ms: Memory limit:262144 kB 给定字符串S(|S|<=5000),下标由1开始.然后Q个问题(Q<=1e6),对于每个问题,给定L,R,回答区间 ...
随机推荐
- H3C 通配符掩码
- java声明异常(throws)
在可能出现异常的方法上声明抛出可能出现异常的类型: 声明的时候尽可能声明具体的异常,方便更好的处理. 当前方法不知道如何处理这种异常,可将该异常交给上一级调用者来处理(非RuntimeExceptio ...
- Python--day38--事件
1,事件的方法: #set和clear #分别用来修改一个事件的状态 True或者False#is_set用来查看一个事件的状态#wait 是依据事件的状态来决定自己是否阻塞# False最 True ...
- HDU 3974 Assign the task
Assign the task Problem Description There is a company that has N employees(numbered from 1 to N),ev ...
- H3C设置vty
[H3C]User-interface vty 0 4 //进入telnet模式 [H3C-ui-vty0-4]autchentication-mode none //telne ...
- ajaxStart()和ajaxStop()方法
使用ajaxSetup()方法设置全局Ajax默认选项 使用ajaxSetup()方法可以设置Ajax请求的一些全局性选项值,设置完成后,后面的Ajax请求将不需要再添加这些选项值,它的调用格式为: ...
- mysql修改数据库密码
方法1: 运行MySQL 5.7 Command Line Client,输入老的密码: use mysql: update user set authentication_string=passwo ...
- Team Foundation Server 2015使用教程【7】:权限为读取器的团队成员连接tfs及checkin操作
- pyinstaller打包py脚本Warning:lib not found等相关问题
小爬从使用Pyinstaller打包py为exe文件以来,一直都会碰到Warning:lib not found等相关问题,诸如: 虽然大多数时候,您像我一样忽略这些warning,打包后的exe也能 ...
- http、https、SSL、TLS的区别
一.HTTP和HTTPS之间的区别 HTTP是一种协议,全称叫作:超文本传输协议(HTTP,HyperText Transfer Protocol),是互联网上应用最为广泛的一种网络协议.所有的WWW ...