区间dp - 不连续的回文串
The rabbits jumped from one stone to another. Tom always jumped clockwise, and Jerry always jumped anticlockwise.
At the beginning, the rabbits both choose a stone and stand on it.
Then at each turn, Tom should choose a stone which have not been stepped
by itself and then jumped to it, and Jerry should do the same thing as
Tom, but the jumping direction is anti-clockwise.
For some unknown reason, at any time , the weight of the two stones
on which the two rabbits stood should be equal. Besides, any rabbit
couldn't jump over a stone which have been stepped by itself. In other
words, if the Tom had stood on the second stone, it cannot jump from the
first stone to the third stone or from the n-the stone to the 4-th
stone.
Please note that during the whole process, it was OK for the two rabbits to stand on a same stone at the same time.
Now they want to find out the maximum turns they can play if they follow the optimal strategy.
For each test cases, the first line contains a integer n denoting the number of stones.
The next line contains n integers separated by space, and the i-th
integer ai denotes the weight of the i-th stone.(1 <= n <= 1000, 1
<= ai <= 1000)
The input ends with n = 0.OutputFor each test case, print a integer denoting the maximum turns.Sample Input
1
1
4
1 1 2 1
6
2 1 1 2 1 3
0
Sample Output
1
4
5
Hint
For the second case, the path of the Tom is 1, 2, 3, 4, and the path of Jerry is 1, 4, 3, 2.
For the third case, the path of Tom is 1,2,3,4,5 and the path of Jerry is 4,3,2,1,5.
题意 : 给你一个环形的串,上面写有一些数字,两只兔子向着相反的方向去跳,任意选择起点,并且要求每一轮两只兔子所占的数字是相同,问最多能进行几轮?
思路分析:其实就是让求一个最长回文的串,对于环的话,我们可以将长度拉直并延伸一倍,对新的串求区间内的回文,比较好写,然后就是在 dp求完任意一个区间内的最长回文串后,我们需要做的就是枚举下区间的头,判断一下长度为 n的区间内的最长回文串的长度最长是多少
代码示例:
int n;
int pre[2005];
int dp[2005][2005]; int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout); while(~scanf("%d", &n) && n){
for(int i = 1; i <= n; i++){
scanf("%d", &pre[i]);
pre[n+i] = pre[i];
}
memset(dp, 0, sizeof(dp));
for(int i = 1; i <= 2*n; i++) dp[i][i] = 1; for(int len = 2; len <= n; len++){
for(int i = 1; i <= 2*n; i++){
int j = i+len-1;
if (j > 2*n) break;
if (pre[i] == pre[j]) dp[i][j] = dp[i+1][j-1]+2;
else dp[i][j] = max(dp[i+1][j], dp[i][j-1]);
}
}
int ans = 0;
for(int i = 1; i <= n; i++) ans = max(ans, dp[i][i+n-1]); // 不共起点
for(int i = 1; i <= n; i++) ans = max(ans, dp[i][i+n-2]+1); // 共起点
printf("%d\n", ans);
}
return 0;
}
区间dp - 不连续的回文串的更多相关文章
- Palindromic characteristics CodeForces - 835D (区间DP,预处理回文串问题)
Palindromic characteristics of string s with length |s| is a sequence of |s|integers, where k-th num ...
- HDU5658:CA Loves Palindromic (回文树,求区间本质不同的回文串数)
CA loves strings, especially loves the palindrome strings. One day he gets a string, he wants to kno ...
- 【区间DP】低价回文
[区间DP]低价回文 标签(空格分隔): 区间DP 回文词 [题目描述] 追踪每头奶牛的去向是一件棘手的任务,为此农夫约翰安装了一套自动系统.他在每头牛身上安装了一个电子身份标签,当奶牛通过扫描器的时 ...
- 区间dp(低价回文)
[题目大意] 追踪每头奶牛的去向是一件棘手的任务,为此农夫约翰安装了一套自动系统.他在每头牛身上安装了一个电子身份标签,当奶牛通过扫描器的时候,系统可以读取奶牛的身份信息.目前,每个身份都是由一个字符 ...
- 区间dp最长回文子序列问题
状态转移方程如下: 当i > j时,dp[i,j]= 0. 当i = j时,dp[i,j] = 1. 当i < j并且str[i] == str[j]时,dp[i][j] = dp[i+1 ...
- manacher算法——回文串计算的高效算法
manacher算法的由来不再赘述,自行百度QWQ... 进入正题,manacher算法是一个高效的计算回文串的算法,回文串如果不知道可以给出一个例子:" noon ",这样应该就 ...
- HDU 4632 Palindrome subsequence(区间dp,回文串,字符处理)
题目 参考自博客:http://blog.csdn.net/u011498819/article/details/38356675 题意:查找这样的子回文字符串(未必连续,但是有从左向右的顺序)个数. ...
- POJ 3280 Cheapest Palindrome(区间DP求改成回文串的最小花费)
题目链接:http://poj.org/problem?id=3280 题目大意:给你一个字符串,你可以删除或者增加任意字符,对应有相应的花费,让你通过这些操作使得字符串变为回文串,求最小花费.解题思 ...
- CodeForces-245H:Queries for Number of Palindromes(3-14:区间DP||回文串)
Times:5000ms: Memory limit:262144 kB 给定字符串S(|S|<=5000),下标由1开始.然后Q个问题(Q<=1e6),对于每个问题,给定L,R,回答区间 ...
随机推荐
- [转]解决pip安装太慢的问题
阅读目录 临时使用: 经常在使用Python的时候需要安装各种模块,而pip是很强大的模块安装工具,但是由于国外官方pypi经常被墙,导致不可用,所以我们最好是将自己使用的pip源更换一下,这样就能解 ...
- H3C 显示OSPF路由信息
- H3C RIP路由表的更新
- java 九个预定义Class对象
基本的 Java 类型(boolean.byte.char.short.int.long.float 和 double)和关键字 void通过class属性也表示为 Class 对象: Class类中 ...
- java 面试题之银行业务系统
1.需求 模拟实现银行业务调度系统逻辑,具体需求如下: 银行内有6个业务窗口,1 - 4号窗口为普通窗口,5号窗口为快速窗口,6号窗口为VIP窗口. 有三种对应类型的客户:VIP客户,普通客户,快速客 ...
- java编程规范大全
JAVA编程规范大全 命名规范 定义这个规范的目的是让项目中所有的文档都看起来像一个人写的,增加可读性,减少项目组中因为换人而带来的损失.(这些规范并不是一定要绝对遵守,但是一定要让程序有良好的可读性 ...
- CF1151div2(Round 553)
CF1151div2(Round 553) 思路题大赛 A 少考虑了一种情况,到死没想到 B 貌似我随机化50000次,没找到就无解貌似也过了 感觉随随便便乱搞+分类讨论都可以过的样子 #includ ...
- samba 部署与实验
一.本地用户登录 1.本地用户验证(Samba服务器默认的安全级别,用户在访问共享资源之前必须提供用户名和密码进行验证) 拓展:tdbsam:该方式是使用一个数据库文件来验证.数据库文件叫passdb ...
- 【译】PEP 318--函数和方法的装饰器
PEP原文 : https://www.python.org/dev/peps/pep-0318 PEP标题: Decorators for Functions and Methods PEP作者: ...
- Spring Boot + Docker + K8S 简单示例
前言 最近看了看k8s,感觉用这个管理docker确实比自己写一坨脚本进步太多了,简直不是一个次原的东西. 看着k8s的官方文档随手写了个小Demo,一个基于k8s的spring boot服务. 代码 ...