import numpy.matlib
import numpy as np a = np.array([[1,2],[3,4]])
b = np.array([[11,12],[13,14]])
print(np.dot(a,b))
numpy.vdot() 函数是两个向量的点积。 如果第一个参数是复数,那么它的共轭复数会用于计算。 如果参数是多维数组,它会被展开。
import numpy as np a = np.array([[1,2],[3,4]])
b = np.array([[11,12],[13,14]]) # vdot 将数组展开计算内积
print (np.vdot(a,b))
计算式为:
1*11 + 2*12 + 3*13 + 4*14 = 130
numpy.inner() 函数返回一维数组的向量内积。对于更高的维度,它返回最后一个轴上的和的乘积。
import numpy as np print (np.inner(np.array([1,2,3]),np.array([0,1,0])))
# 等价于 1*0+2*1+3*0
import numpy as np
a = np.array([[1,2], [3,4]]) print ('数组 a:')
print (a)
b = np.array([[11, 12], [13, 14]]) print ('数组 b:')
print (b) print ('内积:')
print (np.inner(a,b))
内积计算式为:
1*11+2*12, 1*13+2*14
3*11+4*12, 3*13+4*14
numpy.matmul 函数返回两个数组的矩阵乘积。 虽然它返回二维数组的正常乘积,但如果任一参数的维数大于2,则将其视为存在于最后两个索引的矩阵的栈,并进行相应广播。
另一方面,如果任一参数是一维数组,则通过在其维度上附加 1 来将其提升为矩阵,并在乘法之后被去除。
对于二维数组,它就是矩阵乘法:
import numpy.matlib
import numpy as np a = [[1,0],[0,1]]
b = [[4,1],[2,2]]
print (np.matmul(a,b))
二维和一维运算:
import numpy.matlib
import numpy as np a = [[1,0],[0,1]]
b = [1,2]
print (np.matmul(a,b))
print (np.matmul(b,a))
维度大于二的数组 :
import numpy.matlib
import numpy as np a = np.arange(8).reshape(2,2,2)
b = np.arange(4).reshape(2,2)
print (np.matmul(a,b))
numpy.linalg.det() 函数计算输入矩阵的行列式。
行列式在线性代数中是非常有用的值。 它从方阵的对角元素计算。 对于 2×2 矩阵,它是左上和右下元素的乘积与其他两个的乘积的差。
换句话说,对于矩阵[[a,b],[c,d]],行列式计算为 ad-bc。 较大的方阵被认为是 2×2 矩阵的组合。
import numpy as np
a = np.array([[1,2], [3,4]]) print (np.linalg.det(a))
import numpy as np

b = np.array([[6,1,1], [4, -2, 5], [2,8,7]])
print (b)
print (np.linalg.det(b))
print (6*(-2*7 - 5*8) - 1*(4*7 - 5*2) + 1*(4*8 - -2*2))
numpy.linalg.solve() 函数给出了矩阵形式的线性方程的解。
考虑以下线性方程:
x + y + z = 6
2y + 5z = -4
2x + 5y - z = 27
可以使用矩阵表示为:

numpy.linalg.inv() 函数计算矩阵的乘法逆矩阵。
逆矩阵(inverse matrix):设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。
import numpy as np x = np.array([[1,2],[3,4]])
y = np.linalg.inv(x)
print (x)
print (y)
print (np.dot(x,y))
现在创建一个矩阵A的逆矩阵:
import numpy as np a = np.array([[1,1,1],[0,2,5],[2,5,-1]]) print ('数组 a:')
print (a)
ainv = np.linalg.inv(a) print ('a 的逆:')
print (ainv) print ('矩阵 b:')
b = np.array([[6],[-4],[27]])
print (b) print ('计算:A^(-1)B:')
x = np.linalg.solve(a,b)
print (x)
# 这就是线性方向 x = 5, y = 3, z = -2 的解
结果也可以使用以下函数获取:
x = np.dot(ainv,b)

吴裕雄--天生自然Numpy库学习笔记:NumPy 线性代数的更多相关文章

  1. 吴裕雄--天生自然C++语言学习笔记:C++ 标准库

    C++ 标准库可以分为两部分: 标准函数库: 这个库是由通用的.独立的.不属于任何类的函数组成的.函数库继承自 C 语言. 面向对象类库: 这个库是类及其相关函数的集合. C++ 标准库包含了所有的 ...

  2. 吴裕雄--天生自然C++语言学习笔记:C++ STL 教程

    C++ STL(标准模板库)是一套功能强大的 C++ 模板类,提供了通用的模板类和函数,这些模板类和函数可以实现多种流行和常用的算法和数据结构,如向量.链表.队列.栈. C++ 标准模板库的核心包括以 ...

  3. 吴裕雄--天生自然C++语言学习笔记:C++ Web 编程

    什么是 CGI? 公共网关接口(CGI),是一套标准,定义了信息是如何在 Web 服务器和客户端脚本之间进行交换的. CGI 规范目前是由 NCSA 维护的,NCSA 定义 CGI 如下: 公共网关接 ...

  4. 吴裕雄--天生自然C++语言学习笔记:C++ 多线程

    多线程是多任务处理的一种特殊形式,多任务处理允许让电脑同时运行两个或两个以上的程序.一般情况下,两种类型的多任务处理:基于进程和基于线程. 基于进程的多任务处理是程序的并发执行. 基于线程的多任务处理 ...

  5. 吴裕雄--天生自然C++语言学习笔记:C++ 信号处理

    信号是由操作系统传给进程的中断,会提早终止一个程序.在 UNIX.LINUX.Mac OS X 或 Windows 系统上,可以通过按 Ctrl+C 产生中断. 有些信号不能被程序捕获,但是下表所列信 ...

  6. 吴裕雄--天生自然C++语言学习笔记:C++ 模板

    模板是泛型编程的基础,泛型编程即以一种独立于任何特定类型的方式编写代码. 模板是创建泛型类或函数的蓝图或公式.库容器,比如迭代器和算法,都是泛型编程的例子,它们都使用了模板的概念. 每个容器都有一个单 ...

  7. 吴裕雄--天生自然C++语言学习笔记:C++ 命名空间

    假设这样一种情况,当一个班上有两个名叫 Zara 的学生时,为了明确区分它们,在使用名字之外,不得不使用一些额外的信息,比如他们的家庭住址,或者他们父母的名字等等. 同样的情况也出现在 C++ 应用程 ...

  8. 吴裕雄--天生自然C++语言学习笔记:C++ 文件和流

    如何从文件读取流和向文件写入流.这就需要用到 C++ 中另一个标准库 fstream,它定义了三个新的数据类型: ofstream 该数据类型表示输出文件流,用于创建文件并向文件写入信息. ifstr ...

  9. 吴裕雄--天生自然C++语言学习笔记:C++ 数据抽象

    数据抽象是指,只向外界提供关键信息,并隐藏其后台的实现细节,即只表现必要的信息而不呈现细节. 数据抽象是一种依赖于接口和实现分离的编程(设计)技术. 它们向外界提供了大量用于操作对象数据的公共方法,也 ...

  10. 吴裕雄--天生自然C++语言学习笔记:C++ 日期 & 时间

    C++ 标准库没有提供所谓的日期类型.C++ 继承了 C 语言用于日期和时间操作的结构和函数.为了使用日期和时间相关的函数和结构,需要在 C++ 程序中引用 <ctime> 头文件. 有四 ...

随机推荐

  1. 题解【loj6277】数列分块入门1

    题目描述 给出一个长为\(n\)的数列,以及\(n\)个操作,操作涉及区间加法,单点查值. 输入格式 第一行输入一个数字\(n\). 第二行输入\(n\)个数字,第\(i\)个数字为\(a_{i}\) ...

  2. 安装pecl

    $ wget http://pear.php.net/go-pear.phar $ php go-pear.phar //php版本 < 7  $ yum install php-pear // ...

  3. sublime添加自己的编译环境_添加一个.app或者.exe文件执行脚本

    如何添加一个.app或者.exe文件执行脚本 看了很多简书和博客,还是搞不好,最后参考官方文档搞定了: http://www.sublimetext.com/docs/3/build_systems. ...

  4. MySQL学习(四)死锁及死锁检测

    文章图片来自参考资料 MySQL 的锁     根据加锁的范围,MySQL里面的锁大致可以分成全局锁.表级锁和行锁三类.我们需要明白锁的服务是为了数据统一,或者说是事务,数据隔离. 全局锁     全 ...

  5. MySQL连接池详解

    使用场景数据库连接是一种关键的.有限的.昂贵的资源,这一点在多用户的网页应用程序中体现得尤为突出.对数据库连接的管理能显著影响到整个应用程序的伸缩性和健壮性,影响到程序的性能指标.数据库连接池正是针对 ...

  6. 212. 单词搜索 II

    Q: 给定一个二维网格 board 和一个字典中的单词列表 words,找出所有同时在二维网格和字典中出现的单词. 单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中"相邻" ...

  7. SQL 杂项

    select  *  from 表  where to_date(ksrq,'yyyy-MM-dd')<=sysdate and  sysdate  <= to_date(jsrq,'yy ...

  8. github,gitlab的区别

    链接:https://blog.csdn.net/Xiamen_XiaoHong/article/details/83655447 总而言之:gitlab最优

  9. 报bug mui分享微信 ,qq 分享失败

    1. iOS分享链接到微信,分享成功,但是分享的只有title,其他参数都没有 原因是mui分享进行了更新,msg新增了 msg.type 这个配置参数 qq : msg.type='text' 微信 ...

  10. 启动MySQL5.7时报错:initialize specified but the data directory has files in it. Aborting.

    启动MySQL5.7时报错:initialize specified but the data directory has files in it. Aborting 解决方法: vim /etc/m ...