问题定义:

Problem:

\(f: \{ 0,1,2,3,……,N-1 \} \rightarrow \{0,1\}\)

找到 \(f(x)=1\) 的x

解法

经典解法:

经典解法很简单,就是把每一个都看一遍,如果只有一个x对应的f(x)=1,那么平均是要看一半,才能找到那个x。

时间复杂度O(N)

量子解法:

使用Grover search 算法,时间复杂度在 \(O(\sqrt N)\)

Grover search 算法

Grover search 算法一共分为两步:

  1. Phase Inversion
  2. Inversion about the Mean

然后不断的迭代这两步我们就能够得到结果了。

首先我们先看看这两个步骤分别在做什么:

我们把 $f(x)=1 $ 的 \(|x\rangle\) 称为 \(x^*\) ,我们要找的也就是这个 \(x^*\) 。

Phase Inversion:

这一步主要是把 \(x^*\) 的概率幅翻转,变成负数,而其他的保持不变。

即,把 \(\sum_{x } \alpha_x|x\rangle\) 变成 \(\sum_{x \neq x^*} \alpha_x|x\rangle -\alpha_{x^*}|x^*\rangle\)

Inversion about the Mean

这一步呢,就是把 \(\alpha_x\) 变成 \(2\mu- \alpha_x\)

\(\mu\) 是所有概率幅的平均值,\(\mu= \frac{\sum_x \alpha_x}{N}\)

用图可能更好表达这两个步骤究竟在做什么:

图1到图2,就是Phase Inversion,把\(x^*\)的概率幅翻转到了下面,图2中的虚线就是我的概率幅的平均值,图2到图3 就是我们的Inversion about the Mean,对着平均值翻转一次,其余x的概率幅是高于平均值的,所以 \(2\mu- \alpha_x\) 让他们变小了,而我们的 \(x^*\) 他的概率幅是个负数,所以 \(2\mu- \alpha_x\) 后他增加了。

不断的重复这个步骤, \(x^*\) 他的概率幅会越来越大,最后我们测量的时候就会很容的找到他。

进行了 \(\sqrt N\) 后,他的概率幅就会达到 \(\frac{1}{ \sqrt 2}\) ,算概率就是1/2。

那么接下来的问题就是,这些操作是怎么实现的?

Phase Inversion:

这个步骤要做的事情就是,

把 \(\sum_{x } \alpha_x|x\rangle\) 变成 \(\sum_{x \neq x^*} \alpha_x|x\rangle -\alpha_{x^*}|x^*\rangle\)

符号是和f(x)是否为1相关的,进一步化简就是 \(\sum_x (-1)^{f(x)} \alpha_x|x\rangle\)

有没有一丝熟悉感?

把f(x)的结果给放到相位上去,这是我们在Parity Problem中就遇到的问题。

当时的解决方法是把答案比特变成 \(|-\rangle\)。

一般情况,如果我们打算放置答案的比特是 \(|b\rangle\),那么输入的比特就是\(|b \oplus f(x)\rangle\)

如果f(x)=0 那么\(|( \frac{1}{\sqrt2}|0\rangle-\frac{1}{\sqrt2}|1\rangle) \oplus f(x) \rangle = \frac{1}{\sqrt2}|0\rangle-\frac{1}{\sqrt2}|1\rangle = |-\rangle\)

如果f(x)=1 那么\(( \frac{1}{\sqrt2}|0\rangle-\frac{1}{\sqrt2}|1\rangle) \oplus f(x) \rangle = \frac{1}{\sqrt2}|1\rangle-\frac{1}{\sqrt2}|0\rangle = -|-\rangle\)

最后一个比特的值如果在\(|+\rangle |-\rangle\)坐标下测量,一定是 \(|-\rangle\),f(x)的差别也变到了符号上,即 \((-1)^{f(x)}\)

Inversion about the Mean

把 \(\alpha_x\) 变成 \(2\mu- \alpha_x\) ,这个就要比前一个麻烦了

这其实是要求我把现在的态对着 \(\mu\) 翻转。

对着 \(\mu\) 翻转会吗?

不太会。

但是我会对着 \(|0\rangle\) 的翻转啊。

对角线第一个值为1,其余为-1,非对角线的都为0。

\(\left[ \begin{array}{} 1 & 0 & …& 0 \\ 0 & -1 & …& 0 \\…\\0 & 0 & …& -1 \end{array}\right]\left[ \begin{array}{} a_0\\a_1\\…\\a_{n-1} \end{array}\right]=\left[ \begin{array}{} a_0\\-a_1\\…\\-a_{n-1} \end{array}\right]\)

这个矩阵轻而易举的可以让 \(|0\rangle\) 保持不变,非 \(|0\rangle\) 的符号全都翻转。

量子变换要求矩阵式酉矩阵,这个矩阵很明显满足 \(UU^\dagger=U^\dagger U=I\)

接下来怎么做呢?

我们先把我们的态整体来一个从 \(|\mu\rangle\) 到 \(|0\rangle\) 的旋转,对着 \(|0\rangle\) 翻转后,又从 \(|0\rangle\) 到 \(|\mu\rangle\) 翻转回去。

\(|\mu\rangle\) 是一个怎样的态?

所有的x的概率都一样,也就是我们的superposition \(\frac{1}{2^{\frac{n}{2}}} \sum_{x \in \{0,1 \}^n}|x\rangle\)

\(\frac{1}{2^{\frac{n}{2}}} \sum_{x \in \{0,1 \}^n}|x\rangle\) 和 \(|0\rangle\)之间的相互转换,这就是我们最最熟悉的Hadamard Transform了

第二部分的电路图如下:

这个矩阵是可以直接计算的:

我这里直接给出答案,得到的矩阵值呢是下图左边的这个矩阵:

在对应的 \(\alpha_x\)的结果恰好是 \(\frac{2}{N} \sum _{y=0}^{N} \alpha_y -\alpha_x\)

而 \(\frac{2}{N} \sum _{y=0}^{N} \alpha_y\) 恰好就是 \(2\mu\)

至此,呈上最完整的电路图模块:

第一个H门是数据的初始化,第二个门是为了翻转 \(x^*\),第三四五个门是为了对 \(| \mu \rangle\) 翻转,二三四五这四个门就是要给重复的模块了,不断的重复他们就可以不断的提高 \(x^*\)的概率幅,最终找到 \(x^*\)。

参考资料:

Quantume Mechanics & Quantume Computation Lecture 11

量子搜索算法 Grover search的更多相关文章

  1. 【算法】禁忌搜索算法(Tabu Search,TS)超详细通俗解析附C++代码实例

    01 什么是禁忌搜索算法? 1.1 先从爬山算法说起 爬山算法从当前的节点开始,和周围的邻居节点的值进行比较. 如果当前节点是最大的,那么返回当前节点,作为最大值 (既山峰最高点):反之就用最高的邻居 ...

  2. 量子计算机编程(二)——QPU基础函数

    第二部分主要是QPU的基础功能,第一部分就像是我们有了哪些基本的语句,第二部分就是我们能写一些简单基础的函数,一些小模块,第三部分就是他的应用了. 先来看一下一个简单量子应用的结构: 第一步,将量子态 ...

  3. 1月21日 Reference Data Type 数据类型,算法基础说明,二分搜索算法。(课程内容)

    Reference Datat Types 引用参考数据类型 -> 组合数据类型 Array, Hash和程序员自定义的复合资料类型 组合数据的修改: 组合数据类型的变量,不是直接存值,而是存一 ...

  4. DS18B20数字温度计 (三) 1-WIRE总线 ROM搜索算法和实际测试

    目录 DS18B20数字温度计 (一) 电气特性, 寄生供电模式和远距离接线 DS18B20数字温度计 (二) 测温, ROM和CRC算法 DS18B20数字温度计 (三) 1-WIRE总线 ROM搜 ...

  5. 密码疑云 (3)——详解RSA的加密与解密

    上一篇文章介绍了RSA涉及的数学知识,本章将应用这些知识详解RSA的加密与解密. RSA算法的密钥生成过程 密钥的生成是RSA算法的核心,它的密钥对生成过程如下: 1. 选择两个不相等的大素数p和q, ...

  6. 最新证明面临质疑:P/NP问题为什么这么难?

    转自:http://tech.sina.com.cn/d/2017-08-16/doc-ifyixias1432604.shtml 编译 | 张林峰(普林斯顿大学应用数学专业博士研究生) 责编 | 陈 ...

  7. 为什么我们需要Q#?

    原文地址:https://blogs.msdn.microsoft.com/visualstudio/2018/11/15/why-do-we-need-q/ 本文章为机器翻译. 你可能熟悉微软量子的 ...

  8. Suricata配置文件说明

    本系列文章是Suricata官方文档的翻译加上自己对其的理解,部分图片也是来自那篇文章,当然由于初学,很多方面的理解不够透彻,随着深入后面会对本文进行一定的修正和完善. Suricata使用Yaml作 ...

  9. STL非变易算法 - STL算法

    欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/1394600460.html 原创:ST ...

随机推荐

  1. 2019 沈阳网络赛 Fish eating fruit

    这题看了三个月,终于过了,第一次看的时候没学树形DP,想用点分治但是不会 后来学了二次扫描,就有点想法了.... 这东西也真就玄学了吧... #include<iostream> #inc ...

  2. 修改kubelet启动参数

    我是用kubeadm安装的k8s,现在通过Aqua扫描出相关配置问题,需要修改kubelet的启动参数: 默认配置文件名为:10-kubeadm.conf #vim /usr/lib/systemd/ ...

  3. 洛谷$P3877\ [TJOI2010]$打扫房间 网络流

    正解:网络流 解题报告: 传送门$QwQ$ 昂考虑把题目的约束条件详细化?就说每个格点能向四连通连边,问能否做到每个格点度数等于2? $umm$就先黑白染色建两排点呗,然后就$S$向左侧连流量为2的边 ...

  4. $loj\ 6045$ [雅礼集训 $2017\ Day8$] 价 网络流

    正解:网络流 解题报告: 传送门$QwQ$ 这题还,挺有趣的我$jio$得. 考虑依然先是照着最小割的模子建图呗,然后从意义上来分析,割一条边就相当于不吃一种减肥药/买一种药材.由已知得,买的药材数量 ...

  5. 《Java开发学习大纲文档》V8.0

    <Java开发学习大纲文档>V8.0 第八版是以实战作为核心,同时也包含前面所有版本的精华部分,第八版加入的部分有云开发(阿里云OSS存储.(github)gitlab+docker网站自 ...

  6. Go并发编程

    概述 简而言之,所谓并发编程是指在一台处理器上"同时"处理多个任务. 随着硬件的发展,并发程序变得越来越重要.Web服务器会一次处理成千上万的请求.平板电脑和手机app在渲染用户画 ...

  7. js原生深拷贝

    /*****************************************************************************************/ 原生js实现深拷 ...

  8. Java小项目之:五子棋,你下棋下得过电脑吗?

    Java小项目之:五子棋,你下棋下得过电脑吗? Java五子棋功能要求: 1.创建窗口和设计一个棋盘界面 2.实现鼠标点击,棋子出现,黑白棋轮流下 3.能够判断五子相连输赢 4.添加重新开始,悔棋,退 ...

  9. Oracle数据库设计省市区小区数据库建表

    省CREATE TABLE "SF_JECF_BASE"."SF_PROVINCE" ( "id" VARCHAR2(64 BYTE) NO ...

  10. mysql的简单命令

    MySQL的命令介绍:   连接数据库服务器命令: mysql -u 用户名 -p 密码   mysql是连接MySQL数据库的命令 -u表示后跟用户名 -p 后跟密码   如果登录后展示 " ...