对于前30%的数据,可以考虑dp,f[i][j][k]表示时间为i,在i,j位置的方案数,枚举转移即可。要注意的是可以走到矩阵外。

对于另外30%数据,考虑推一下式子,设向右走y步,左z,上s,下x。那么y-z=n,s-x=m。所以我们枚举s就可以求得sxzy,步数确定之后就比较简单了,显然答案为

$∑C_T^s*C_{T-s}^x*C_{T-s-x}^z*C_{T-s-x-z}^y$,化减得ans=∑$\frac{T!}{s!x!z!y!}$,由于mod是质数,直接逆元干就行了。

对于100%数据,难点就在于p不是质数,开始我想着分解质因数,然后T了。

考虑一下如何求组合数%合数?(合数为若干质数乘积)

将合数质因数分解,用卢卡斯求出组合数mod每个质数,然后发现其实就是线性同余方程组,CRT解即可。

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#define int LL
#define ma(x) memset(x,0,sizeof(x))
#define LL long long
using namespace std;
int T,mod,n,m;
int s,x,z,y;
LL f[][][];
LL jc[];
int cnt[];
int prime[],num;
bool isprime[];
LL exgcd(int a,int b,int &x,int &y)
{
if(!b){x=,y=;return a;}
int gcd=exgcd(b,a%b,x,y),t=x;
x=y,y=t-a/b*y;
return gcd;
}
void ss()
{
const int N=;
for(int i=;i<=N;i++)isprime[i]=;
for(int i=;i<=N;i++)
{
if(isprime[i])prime[++num]=i;
for(int j=;j<=num&&i*prime[j]<=N;j++)
{
isprime[i*prime[j]]=;
if(i%prime[j]==)break;
}
}
}
void add(int x,int nu)
{
for(int i=;prime[i]*prime[i]<=x;i++)
while(x%prime[i]==){cnt[prime[i]]+=nu;x/=prime[i];}
cnt[x]+=nu;
}
bool pdprime(int x)
{
for(int i=;i*i<=x;i++)
if(x%i==)return ;
return ;
}
int fj[],cntt;
LL poww(LL a,int b,int mod)
{
LL ans=;
while(b)
{
if(b&)ans=ans*a%mod;
a=a*a%mod;
b=b>>;
}
return ans;
}
LL C(int n,int m,int mod)
{
if(m>n)return ;
return jc[n]*poww(jc[m],mod-,mod)%mod*poww(jc[n-m],mod-,mod)%mod;
}
LL Lucas(int n,int m,int mod)
{
if(m>n)return ;
if(!m)return ;
return Lucas(n/mod,m/mod,mod)*C(n%mod,m%mod,mod)%mod;
}
int CRT(int W[],int B[],int k)
{
int x,y,a=,m,n=;
for(int i=;i<=k;i++)
n*=W[i];
for(int i=;i<=k;i++)
{
m=n/W[i];
exgcd(W[i],m,x,y);
a=(a+y*m*B[i])%n;
}
return a>?a:(a+n);
}
int w[],b[];
signed main()
{
// freopen("out.doc","w",stdout); ss();
cin>>T>>mod>>n>>m;int tem=mod;
for(int i=;prime[i]*prime[i]<=tem;i++)
while(tem%prime[i]==)
{
fj[++cntt]=prime[i];
tem/=prime[i];
}
if(tem>)fj[++cntt]=tem;
// for(int i=1;i<=cntt;i++)cout<<fj[i]<<" ";puts("");
if(T<=)
{
f[][][]=;
for(int i=;i<=T;i++)
for(int j=;j<=n+;j++)
for(int k=;k<=m+;k++)
f[i][j][k]=((f[i-][j][k-]+f[i-][j][k+])%mod+(f[i-][j-][k]+f[i-][j+][k])%mod)%mod;
cout<<f[T][n+][m+]%mod<<endl;
return ;
}
if(pdprime(mod))
{
if(n<)n=-n;
if(m<)m=-m;
jc[]=;for(int i=;i<=;i++)jc[i]=jc[i-]*i%mod;
LL ans=;
for(int s=m;s<=T;s++)
{
x=s-m;
if((T-s-x+n)%!=)continue;
y=(T-s-x+n)/;
z=y-n;
if(y<||z<)break;
ans=(ans+jc[T]*poww(jc[s],mod-,mod)%mod*poww(jc[x],mod-,mod)%mod*poww(jc[z],mod-,mod)%mod*poww(jc[y],mod-,mod)%mod)%mod;
}
cout<<ans<<endl;
}
else
{
if(n<)n=-n;
if(m<)m=-m;
jc[]=;for(int i=;i<=;i++)jc[i]=jc[i-]*i%mod;
LL ans=;
for(int s=m;s<=T;s++)
{
x=s-m;
if((T-s-x+n)%!=)continue;
y=(T-s-x+n)/;
z=y-n;
if(y<||z<)break;
LL tem=;
ma(w),ma(b);
for(int i=;i<=cntt;i++)
w[i]=fj[i],b[i]=Lucas(T,s,fj[i]);
tem=tem*CRT(w,b,cntt)%mod;
ma(w),ma(b);
for(int i=;i<=cntt;i++)
w[i]=fj[i],b[i]=Lucas(T-s,x,fj[i]);
tem=tem*CRT(w,b,cntt)%mod;
ma(w),ma(b);
for(int i=;i<=cntt;i++)
w[i]=fj[i],b[i]=Lucas(T-s-x,z,fj[i]);
tem=tem*CRT(w,b,cntt)%mod;
ans=(ans+tem)%mod;
}
cout<<ans%mod<<endl;
}
}

HZOJ visit的更多相关文章

  1. HZOJ 20190722 visit (组合数学+数论)

    考试T2,考试时打了个$O(n^3)$dp暴力,思路还是很好想的,但细节也不少,然后滚动数组没清空,而且题又看错了,只得了10pts,真是血的教训. 题解: 其实看数据范围,给出了模数是否为质数,其实 ...

  2. hdu4607 Park Visit(树的直径)

    Park Visit Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  3. hdu 4607 Park Visit 求树的直径

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4607 题目大意:给你n个点,n-1条边,将图连成一棵生成树,问你从任意点为起点,走k(k<=n) ...

  4. [Swift]LeetCode811. 子域名访问计数 | Subdomain Visit Count

    A website domain like "discuss.leetcode.com" consists of various subdomains. At the top le ...

  5. [LeetCode] Subdomain Visit Count 子域名访问量统计

    A website domain like "discuss.leetcode.com" consists of various subdomains. At the top le ...

  6. LeetCode 811 Subdomain Visit Count 解题报告

    题目要求 A website domain like "discuss.leetcode.com" consists of various subdomains. At the t ...

  7. 2010-2011 ACM-ICPC, NEERC, Moscow Subregional Contest Problem A. Alien Visit 计算几何

    Problem A. Alien Visit 题目连接: http://codeforces.com/gym/100714 Description Witness: "First, I sa ...

  8. HDU 4607 Park Visit (树的最长链)

    Park Visit Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  9. [LeetCode&Python] Problem 811. Subdomain Visit Count

    A website domain like "discuss.leetcode.com" consists of various subdomains. At the top le ...

随机推荐

  1. git中由readme.md文件引发的问题

    在GitHub上建立一个仓库并且添加了readme.txt文件. 无论是push前先将远程仓库pull到本地仓库,还是强制push都会弹出这个问题. Github 禁用了TLS v1.0 and v1 ...

  2. uva 11300 分金币(利用绝对值加和进行求出最小值)

    //qq 767039957 welcome #include<cstdio> #include<algorithm> #include<vector> #incl ...

  3. 【同余最短路】洛谷 P2662 牛场围栏

    关于同余最短路的部分 [同余最短路]P3403跳楼机/P2371墨墨的等式 [P2662牛场围栏] 题目背景 小L通过泥萌的帮助,成功解决了二叉树的修改问题,并因此写了一篇论文, 成功报送了叉院(羡慕 ...

  4. dom元素分屏加载

    载入一个内容较多的页面的时候,如果不做任何处理,则会在一开始就把全部内容加载出来,影响了性能和体验,所以现在常用分屏加载的功能,就是dom内容出现在屏幕可视范围内的时候,再加载dom节点,起到优化的作 ...

  5. DesktopLayer.exe专杀

    这两天发现电脑卡慢. 同事电脑发现病毒,而后装上杀软后(一直在裸奔~~~),发现自己电脑也存在. DesktopLayer.exe 会有以下几个行为: 第一,会在C:\Program Files (x ...

  6. listview显示固定条数

    看了很多网上其他大神的,感觉还是在listview的adapter中的getCount中下手比较好点 毕竟计算高度等等,那会让辅助的布局会一团糟,例如下面的搜索历史只显示四条,布局中有横向listvi ...

  7. web前端学习(四)JavaScript学习笔记部分(3)-- JavaScript函数+异常处理+事件处理

    1.Javascript函数-了解函数的用途 1.1.函数: 函数是由事件驱动的或者当它被调用时执行的可重复使用的代码块 2.Javascript函数-定义函数 2.1.function必须小写 3. ...

  8. arcgis点密度专题

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  9. Redhad的开源Paas平台:OpenShift

    参考redHat的官方文章翻译而来:https://openshift.redhat.com/community/wiki/architecture-overview OpenShift Origin ...

  10. Codeforces Round #192 (Div. 2) A. Cakeminator【二维字符数组/吃掉cake,并且是一行或者一列下去,但是该行/列必须没有草莓的存在】

    A. Cakeminator time limit per test 1 second memory limit per test 256 megabytes input standard input ...