D. Choosing Capital for Treeland
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The country Treeland consists of n cities, some pairs of them are connected with unidirectional roads. Overall there are n - 1 roads in the country. We know that if we don't take the direction of the roads into consideration, we can get from any city to any other one.

The council of the elders has recently decided to choose the capital of Treeland. Of course it should be a city of this country. The council is supposed to meet in the capital and regularly move from the capital to other cities (at this stage nobody is thinking about getting back to the capital from these cities). For that reason if city a is chosen a capital, then all roads must be oriented so that if we move along them, we can get from city a to any other city. For that some roads may have to be inversed.

Help the elders to choose the capital so that they have to inverse the minimum number of roads in the country.

Input

The first input line contains integer n (2 ≤ n ≤ 2·105) — the number of cities in Treeland. Next n - 1 lines contain the descriptions of the roads, one road per line. A road is described by a pair of integers si, ti (1 ≤ si, ti ≤ nsi ≠ ti) — the numbers of cities, connected by that road. The i-th road is oriented from city si to city ti. You can consider cities in Treeland indexed from 1 to n.

Output

In the first line print the minimum number of roads to be inversed if the capital is chosen optimally. In the second line print all possible ways to choose the capital — a sequence of indexes of cities in the increasing order.

Examples
Input
3
2 1
2 3
Output
0
2
Input
4
1 4
2 4
3 4
Output
2
1 2 3 题意:

给出N个点,其中有N-1条有向边,边的方向可以改变,问最少改变多少条边可以从某一个点到达任意一个点,同时求出这些点。

代码:

 /*
要改变的边的权值为1,不需要改变的边的权值为0,两次dfs,第一次算出以1点为根节点到所有点要改变的边数,第二次以1为根节点向下遍历节点
算出每一个点到达所有点要改变的边数,dp[son]+=(dp[root]-dp[son])+((tree[i].val)?-1:1),某一点的值是他父节点
的值减去他以前的值再考虑他与父节点之间的边的方向。
*/
#include<iostream>
#include<string>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<vector>
#include<iomanip>
#include<queue>
#include<stack>
using namespace std;
int n,lne;
int dp[];
int head[];
int city[];
struct node
{
int to,next,val;
}tree[];
void add(int a,int b)
{
tree[lne].to=b;
tree[lne].val=;
tree[lne].next=head[a];
head[a]=lne++;
tree[lne].to=a;
tree[lne].val=;
tree[lne].next=head[b];
head[b]=lne++;
}
void dfs1(int root,int pre)
{
for(int i=head[root];i!=-;i=tree[i].next)
{
int son=tree[i].to;
if(son==pre)
continue;
dfs1(son,root);
dp[root]+=dp[son]+tree[i].val;
}
}
void dfs2(int root,int pre)
{
for(int i=head[root];i!=-;i=tree[i].next)
{
int son=tree[i].to;
if(son==pre)
continue;
dp[son]+=(dp[root]-dp[son])+((tree[i].val)?-:);
dfs2(son,root);
}
}
int main()
{
int a,b;
while(scanf("%d",&n)!=EOF)
{
lne=;
memset(head,-,sizeof(head));
for(int i=;i<n-;i++)
{
scanf("%d%d",&a,&b);
add(a,b);
}
int k=,sum=;
memset(dp,,sizeof(dp));
dfs1(,);
dfs2(,);
for(int i=;i<=n;i++)
{
if(dp[i]<sum)
{
memset(city,,sizeof(city));
k=;
city[k++]=i;
sum=dp[i];
}
else if(dp[i]==sum)
city[k++]=i;
}
printf("%d\n",sum);
for(int i=;i<k;i++)
{
if(i==k-)
printf("%d\n",city[i]);
else printf("%d ",city[i]);
}
}
return ;
}

CodeForces 219D 树形DP的更多相关文章

  1. CF 219D 树形DP

    CF 219D [题目链接]CF 219D [题目类型]树形DP &题意: 给一个n节点的有向无环图,要找一个这样的点:该点到其它n-1要逆转的道路最少,(边<u,v>,如果v要到 ...

  2. Codeforces 1153D 树形DP

    题意:有一个游戏,规则如下:每个点有一个标号,为max或min, max是指这个点的值是所有子节点中值最大的那一个,min同理.问如何给这颗树的叶子节点赋值,可以让这棵树的根节点值最大. 思路:很明显 ...

  3. Codeforces 1088E 树形dp+思维

    比赛的时候看到题意没多想就放弃了.结果最后D也没做出来,还掉分了,所以还是题目做的太少,人太菜. 回到正题: 题意:一棵树,点带权值,然后求k个子连通块,使得k个连通块内所有的点权值相加作为分子除以k ...

  4. Codeforces 1179D 树形DP 斜率优化

    题意:给你一颗树,你可以在树上添加一条边,问添加一条边之后的简单路径最多有多少条?简单路径是指路径中的点只没有重复. 思路:添加一条边之后,树变成了基环树.容易发现,以基环上的点为根的子树的点中的简单 ...

  5. CodeForces - 337D 树形dp

    题意:一颗树上有且仅有一只恶魔,恶魔会污染距离它小于等于d的点,现在已经知道被污染的m个点,问恶魔在的可能结点的数量. 容易想到,要是一个点到(距离最远的两个点)的距离都小于等于d,那么这个点就有可能 ...

  6. codeforces 337D 树形DP Book of Evil

    原题直通车:codeforces 337D Book of Evil 题意:一棵n个结点的树上可能存在一个Evil,Evil危险范围为d,即当某个点与它的距离x<=d时,那么x是危险的. 现已知 ...

  7. Up and Down the Tree CodeForces - 1065F (树形dp)

    链接 题目大意:给定$n$结点树, 假设当前在结点$v$, 有两种操作 $(1)$移动到$v$的子树内任意一个叶子上 $(2)$若$v$为叶子, 可以移动到距离$v$不超过$k$的祖先上 初始在结点$ ...

  8. codeforces 1053D 树形DP

    题意:给一颗树,1为根节点,有两种节点,min或者max,min节点的值是它的子节点的值中最小的,max节点的值是它的子节点的值中最大的,若共有k个叶子,叶子的值依次为1~k. 问给每个叶子的值赋为几 ...

  9. Codeforces 1120D (树形DP 或 最小生成树)

    题意看这篇博客:https://blog.csdn.net/dreaming__ldx/article/details/88418543 思路看这篇:https://blog.csdn.net/cor ...

随机推荐

  1. kylin cube测试时,报错:org.apache.hadoop.security.AccessControlException: Permission denied: user=root, access=WRITE, inode="/user":hdfs:supergroup:drwxr-xr-x

    异常: org.apache.hadoop.security.AccessControlException: Permission denied: user=root, access=WRITE, i ...

  2. Loadrunner中动态添加虚拟用户

    添加的虚拟用户会立马开始执行: 场景组的两种模式: Vuser组模式: Vuser组模式中,对于压力负载机是不能同时添加多个 但是我们可以在一个脚本里通过多次添加Vuser,每次添加30个Vuser, ...

  3. linux服务器init 5启动图形界面,报错Retrigger failed udev events

    今天因工作需要开启linux系统的桌面环境,使用startx未成功,报如下错误: [root@ /]# startx xauth: creating new authority xinit: No s ...

  4. JAVA Day6

    1.对象:用来描述客观事物的一个实体,由一组属性和方法组成 2.属性--对象具有的各种特征    *每个对象的每个属性都拥有特定值    *例如:张浩和李明的年龄.姓名不一样 3.方法--对象执行的操 ...

  5. 静态局部变量、静态全局变量、extern全局变量、自动变量 札记

    静态局部变量 静态局部变量. 从称呼上我们可以看出,静态局部变量首先是一个局部变量,因此其只在定义它的函数内有效,冠以静态的头衔后,其生存期就被延长了,不会随着函数的返回而被撤销.我们可以这样来理解: ...

  6. [转载]void及void*的深度剖析

    void的含义 void即"无类型",void *则为"无类型指针",可以指向任何数据类型. void指针使用规范 ①void指针可以指向任意类型的数据,亦即可 ...

  7. SpringMVC中向服务器传递时间参数时出现的问题

    1. 问题描述: 今天在SpringMVC应用中上传参数的时候遇到如下问题: The request sent by the client was syntactically incorrect 这说 ...

  8. Django学习笔记之一

    一.Windows下安装 Django 1.下载安装包解压后放到本地目录如C:\Django-1.7.2 官网地址:https://www.djangoproject.com/download/ 2. ...

  9. iOS NSDate获取当前时间并格式化

    NSDateFormatter *formatter = [[NSDateFormatter alloc]init]; [formatter setDateFormat:@"yyyy-MM- ...

  10. NoSql之MongoDB--Windows下数据库配置及初步使用

    1.NoSql简介 NoSql(Not Only Sql)指的是非关系型的数据库.下一代数据库主要解决几个要点:非关系型的.分布式的.开源的.水平可扩展的.原始的目的是为了大规模web应用,这场 运动 ...