3173: [Tjoi2013]最长上升子序列

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1524  Solved: 797
[Submit][Status][Discuss]

Description

给定一个序列,初始为空。现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置。每插入一个数字,我们都想知道此时最长上升子序列长度是多少?

Input

第一行一个整数N,表示我们要将1到N插入序列中,接下是N个数字,第k个数字Xk,表示我们将k插入到位置Xk(0<=Xk<=k-1,1<=k<=N)

Output

N行,第i行表示i插入Xi位置后序列的最长上升子序列的长度是多少。

Sample Input

3
0 0 2

Sample Output

1
1
2

HINT

100%的数据 n<=100000

Source

 

[Submit][Status][Discuss]

分析

本来是想找Treap的练手题,考完NOIP放松一下心情的,结果看完题发现根本不用Treap……

首先,因为加入的元素是越来越大的,所以每次加入之后对于后面的元素的LIS的DP值(即以其结尾的最长上升子序列长度)不会改变,而前面的更不会改变。也就是说,最终序列的DP数组就是逐步加入的DP值了。所以只需要想方设法求出最终序列,再做一遍O(NlogN)的LIS问题即可。

求解最终的序列方法多种多样,可以用Treap暴力维护插入操作,也可以逆着推出最终的序列,我选择了后者。

对于第N个插入的元素,其插入的位置就是最终的位置。当它找到了最终位置之后,就把那个位置改为空。类似的,每个元素的最终位置,就是此时的第Xk个非空位置。这个操作用线段树维护即可轻松做到O(logN),当然也可以树状数组+二分做到O(log^2N),常数小也许跑得反而更快,(lll¬ω¬)。

代码

 #include <bits/stdc++.h>

 using namespace std;

 #define low lower_bound
#define upp upper_bound const int N = ;
const int inf = 0x3f3f3f3f; int n;
int pos[N];
int num[N];
int ans[N];
int stk[N]; struct node
{
int lt, rt, sum; node (void) :
lt (), rt (), sum () {};
}; node tree[N << ]; void build (int p, int l, int r)
{
node &t = tree[p]; t.lt = l;
t.rt = r; t.sum = r - l + ; if (l != r)
{
int mid = (l + r) >> ; build (p << , l, mid);
build (p << | , mid + , r);
}
} void change (int p, int pos, int val)
{
node &t = tree[p]; if (t.lt != t.rt)
{
int mid = (t.lt + t.rt) >> ; if (pos <= mid)
change (p << , pos, val);
else
change (p << | , pos, val); t.sum = tree[p << ].sum + tree[p << | ].sum;
}
else
t.sum = val;
} int query (int p, int val)
{
node &t = tree[p]; if (t.lt != t.rt)
{
int tmp = tree[p << ].sum; if (val <= tmp)
return query (p << , val);
else
return query (p << | , val - tmp);
}
else
return t.lt;
} signed main (void)
{
scanf ("%d", &n); for (int i = ; i <= n; ++i)
scanf ("%d", pos + i); build (, , n); for (int i = n; i >= ; --i)
{
int t = query (, pos[i] + );
num[t] = i, change (, t, );
} memset (stk, inf, sizeof(stk)); for (int i = ; i <= n; ++i)
{
*low (stk, stk + i, num[i]) = num[i];
ans[num[i]] = low (stk, stk + i, num[i]) - stk;
} for (int i = ; i <= n; ++i)
ans[i] = max (ans[i], ans[i - ]); for (int i = ; i <= n; ++i)
printf ("%d\n", ans[i] + );
}

BZOJ_3173.cpp

后记:

大概是刚考完NOIP,又要准备学考,大家的刷题兴致不高啊,居然被我轻松拿了Day榜,(*^_^*)/。

No. User Nick Name AC Submit Ratio
1 YOUSIKI ねえ、あなたは知っていますか、桜の行方の速度は秒速5センチメートル 5 6 83.333%

@Author: YouSiki

BZOJ 3173: [Tjoi2013]最长上升子序列的更多相关文章

  1. Bzoj 3173: [Tjoi2013]最长上升子序列 平衡树,Treap,二分,树的序遍历

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1183  Solved: 610[Submit][St ...

  2. BZOJ 3173: [Tjoi2013]最长上升子序列( BST + LIS )

    因为是从1~n插入的, 慢插入的对之前的没有影响, 所以我们可以用平衡树维护, 弄出最后的序列然后跑LIS就OK了 O(nlogn) --------------------------------- ...

  3. BZOJ 3173: [Tjoi2013]最长上升子序列 [splay DP]

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1613  Solved: 839[Submit][St ...

  4. bzoj 3173 [Tjoi2013]最长上升子序列 (treap模拟+lis)

    [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2213  Solved: 1119[Submit][Status] ...

  5. BZOJ 3173 [Tjoi2013] 最长上升子序列 解题报告

    这个题感觉比较简单,但却比较容易想残.. 我不会用树状数组求这个原排列,于是我只好用线段树...毕竟 Gromah 果弱马. 我们可以直接依次求出原排列的元素,每次找到最小并且最靠右的那个元素,假设这 ...

  6. BZOJ 3173: [Tjoi2013]最长上升子序列 (线段树+BIT)

    先用线段树预处理出每个数最终的位置.然后用BIT维护最长上升子序列就行了. 用线段树O(nlogn)O(nlogn)O(nlogn)预处理就直接倒着做,每次删去对应位置的数.具体看代码 CODE #i ...

  7. bzoj 3173: [Tjoi2013]最长上升子序列【dp+线段树】

    我也不知道为什么把题看成以插入点为结尾的最长生生子序列--还WA了好几次 先把这个序列最后的样子求出来,具体就是倒着做,用线段树维护点数,最开始所有点都是1,然后线段树上二分找到当前数的位置,把这个点 ...

  8. BZOJ 3173: [Tjoi2013]最长上升子序列 Splay

    一眼切~ 重点是按照 $1$~$n$ 的顺序插入每一个数,这样的话就简单了. #include <cstdio> #include <algorithm> #define N ...

  9. 3173: [Tjoi2013]最长上升子序列

    原题:http://www.lydsy.com/JudgeOnline/problem.php?id=3173 题解:促使我写这题的动力是,为什么百度遍地是Treap,黑人问号??? 这题可以用线段树 ...

随机推荐

  1. C# 内存信息

      Process proc = Process.GetCurrentProcess();                 Console.Write("专用工作集内存:");   ...

  2. Javascript 代码格式化(JsFormat)

    JsFormat 在GitHub 上的地址: https://github.com/jdc0589/JsFormat 这是一个sublime text 2 的插件. 安装: 先安装 sublime p ...

  3. SQL SERVER的连接方式

    最近在做项目的时候,遇到了SQLSERVER的连接,以前是很模糊的,现在做一个简单的总结. 针对SQL_SERVER,连接指定的方式有两种,一种是Where条件指定方式,另外一种是采用On连指定连接条 ...

  4. IT教程网

    这个IT教程网(印度),我认为是最好的.里面的知识基础实用,覆盖面很广,作为IT入门和了解都是极好的. http://www.tutorialspoint.com/

  5. indows 8上强制Visual Studio以管理员身份运行

    http://diaosbook.com/Post/2013/2/28/force-visual-studio-always-run-as-admin-on-windows-8 Windows 8的一 ...

  6. ELK+FileBeat+Log4Net

    ELK+FileBeat+Log4Net搭建日志系统 output { elasticsearch { hosts => ["localhost:9200"] } stdou ...

  7. druid 数据源 使用属性文件的一个坑

    直接上代码: <bean id="propertiesFactoryBean" class="org.springframework.beans.factory.c ...

  8. Oracle XE http端口8080的修改

    Oracle Express Edition(XE)默认的http端口是8080,这跟JBoss/Tomcat的默认端口相同,导致Jboss启动冲突. 修改办法: 1. 以dba身份登录XE 2. 执 ...

  9. ASP.NT运行原理和页面生命周期详解及其应用

    ASP.NT运行原理和页面生命周期详解及其应用 1. 下面是我画的一张关于asp.net运行原理和页面生命周期的一张详解图.如果你对具体不太了解,请参照博客园其他帖子.在这里我主要讲解它的实际应用.  ...

  10. javascript 中加’var‘和不加'var'的区别,你真的懂吗?

    没看之前千万别说我是标题党,这个问题真的有好多淫都不懂!!! 大家都看了很多文章,都说避免隐式声明全局变量,就是说声明变量前必须加'var',那加了'var'和不加'var'到底有啥区别呢? 先来看一 ...