2440: [中山市选2011]完全平方数

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 2371  Solved: 1143
[Submit][Status][Discuss]

Description

小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。 这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了小X。小X很开心地收下了。 然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?

Input

包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。 
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。

Output

含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。

Sample Input

4
1
13
100
1234567

Sample Output

1
19
163
2030745

HINT

对于 100%的数据有 1 ≤ Ki ≤ 10^9, T ≤ 50

Source

Solution

首先想到容斥,但是询问需要涉及x之前有多少满足的数,显然不能枚举,不过可以二分

二分x,那么涉及求满足条件的数的个数,考虑利用莫比乌斯反演函数的性质,计算质数的平方的倍数(有重复所以利用莫比乌斯函数)

判定一下左右段卡卡就出来了

根据容斥原理可知 对于sqrt(x)以内所有的质数 有
•  x以内的无平方因子数
•=0个质数乘积的平方的倍数的数的数量(1的倍数)
•-每个质数的平方的倍数的数的数量(9的倍数,25的倍数,...)
•+每2个质数乘积的平方的倍数的数的数量(36的倍数,100的倍数,...)-...

坑点:

check中计算的时候会爆int,注意开longlong(一开始真的没注意到)

注意二分的范围(这道题完全可以1~2*K)

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
int T,K;
int prime[],tot,mu[];bool flag[];
void Prework(int x)
{
flag[]=; mu[]=;
for (int i=; i<=x; i++)
{
if (!flag[i]) prime[++tot]=i,mu[i]=-;
for (int j=; j<=tot&&i*prime[j]<=x; j++)
{
flag[i*prime[j]]=;
if (!(i%prime[j])) {mu[i*prime[j]]=; break;}
else mu[i*prime[j]]=-mu[i];
}
}
}
long long check(long long x)
{
long long re=; int t=sqrt(x);
for (int i=; i<=t; i++) re+=mu[i]*x/(i*i);
return re;
}
int main()
{
T=read(); Prework();
while (T--)
{
K=read();
long long l=,r=*K;
while (l<=r)
{
int mid=(l+r)>>;
if (check(mid)<K) l=mid+;
else r=mid-;
}
printf("%lld\n",l);
}
return ;
}

垃圾DaD3zZ,忘开longlong,TLE成狗

【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定的更多相关文章

  1. [BZOJ4804]欧拉心算:线性筛+莫比乌斯反演

    分析 关于这道题套路到不能再套路了没什么好说的,其实发这篇博客的目的只是为了贴一个线性筛的模板. 代码 #include <bits/stdc++.h> #define rin(i,a,b ...

  2. [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)

    [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...

  3. [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)

    [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...

  4. BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演

    BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求 ...

  5. [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)

    [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...

  6. The Euler function(线性筛欧拉函数)

    /* 题意:(n)表示小于n与n互质的数有多少个,给你两个数a,b让你计算a+(a+1)+(a+2)+......+b; 初步思路:暴力搞一下,打表 #放弃:打了十几分钟没打完 #改进:欧拉函数:具体 ...

  7. BZOJ 2440 完全平方数(莫比乌斯反演+二分查找)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=23362 题意:定义含有平方数因子的数为完全平方数(平方数因子不包含 ...

  8. bzoj 4407: 于神之怒加强版【莫比乌斯反演+线性筛】

    看着就像反演,所以先推式子(默认n<m): \[ \sum_{d=1}^{n}d^k\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d] \] \[ =\sum_{d=1} ...

  9. BZOJ_2440_[中山市选2011]完全平方数_容斥原理+线性筛

    BZOJ_2440_[中山市选2011]完全平方数_容斥原理 题意: 求第k个不是完全平方数倍数的数 分析: 二分答案,转化成1~x中不是完全平方数倍数的数的个数 答案=所有数-1个质数的平方的倍数+ ...

随机推荐

  1. Centos5.8下编译安装PHP5.4和memcached, phalcon, yaf, apc

    安装GIT 需要先安装gcc-c++ (sudo yum install gcc-c++)sudo yum install gettext-devel expat-devel cpio perl op ...

  2. try catch finally的执行顺序(有return的情况下)

    结论:1.不管有木有出现异常,finally块中代码都会执行:2.当try和catch中有return时,finally仍然会执行:3.finally是在return后面的表达式运算后执行的(此时并没 ...

  3. BZOJ 1251: 序列终结者

    1251: 序列终结者 Time Limit: 20 Sec  Memory Limit: 162 MB Submit: 3773  Solved: 1579 [Submit][Status][Dis ...

  4. [转]Spring JdbcTemplate 查询分页

    原文:http://blog.csdn.net/xiaofanku/article/details/4280128 现在进行的项目由于数据库的遗留原因(设计的不堪入目)不能用hibernate.所以用 ...

  5. HP DL60 Gen9 安装CentOS 6.5

    由于Gen 9的VID中自带RETHAT 5.X-7.0的驱动, 所以不需要制作驱动盘. 一, 准备工作 1. 制作 CentOS安装盘 2. 配置阵列, 开机过了自检后按F10. 自己看着配... ...

  6. Linux学期总结

    学习笔记链接 第一次 http://www.cnblogs.com/Spr1ngxx/p/4823573.html 第二次 http://www.cnblogs.com/Spr1ngxx/p/4842 ...

  7. <实训|第七天>横扫Linux磁盘分区、软件安装障碍附制作软件仓库

    期待已久的linux运维.oracle"培训班"终于开班了,我从已经开始长期四个半月的linux运维.oracle培训,每天白天我会好好学习,晚上回来我会努力更新教程,包括今天学到 ...

  8. Python中list,tuple,dict,set的区别和用法

    Python语言简洁明了,可以用较少的代码实现同样的功能.这其中Python的四个内置数据类型功不可没,他们即是list, tuple, dict, set.这里对他们进行一个简明的总结. List ...

  9. Jquery 页面首次加载方式

    $(document).ready(function(){ alert("111"); }); $(function(){ alert("222"); }); ...

  10. 基于FPGA的通信系统实验

    伪随机信号发生器 1.伪随机信号发生器原理 伪随机信号发生器又叫PN序列发生器或者是m序列发生器.m序列是一种线性反馈寄存器序列,m序列的产生可以利用r级寄存器产生长度为2^r-1的m序列,该实验中采 ...