2440: [中山市选2011]完全平方数

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 2371  Solved: 1143
[Submit][Status][Discuss]

Description

小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。 这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了小X。小X很开心地收下了。 然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?

Input

包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。 
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。

Output

含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。

Sample Input

4
1
13
100
1234567

Sample Output

1
19
163
2030745

HINT

对于 100%的数据有 1 ≤ Ki ≤ 10^9, T ≤ 50

Source

Solution

首先想到容斥,但是询问需要涉及x之前有多少满足的数,显然不能枚举,不过可以二分

二分x,那么涉及求满足条件的数的个数,考虑利用莫比乌斯反演函数的性质,计算质数的平方的倍数(有重复所以利用莫比乌斯函数)

判定一下左右段卡卡就出来了

根据容斥原理可知 对于sqrt(x)以内所有的质数 有
•  x以内的无平方因子数
•=0个质数乘积的平方的倍数的数的数量(1的倍数)
•-每个质数的平方的倍数的数的数量(9的倍数,25的倍数,...)
•+每2个质数乘积的平方的倍数的数的数量(36的倍数,100的倍数,...)-...

坑点:

check中计算的时候会爆int,注意开longlong(一开始真的没注意到)

注意二分的范围(这道题完全可以1~2*K)

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
int T,K;
int prime[],tot,mu[];bool flag[];
void Prework(int x)
{
flag[]=; mu[]=;
for (int i=; i<=x; i++)
{
if (!flag[i]) prime[++tot]=i,mu[i]=-;
for (int j=; j<=tot&&i*prime[j]<=x; j++)
{
flag[i*prime[j]]=;
if (!(i%prime[j])) {mu[i*prime[j]]=; break;}
else mu[i*prime[j]]=-mu[i];
}
}
}
long long check(long long x)
{
long long re=; int t=sqrt(x);
for (int i=; i<=t; i++) re+=mu[i]*x/(i*i);
return re;
}
int main()
{
T=read(); Prework();
while (T--)
{
K=read();
long long l=,r=*K;
while (l<=r)
{
int mid=(l+r)>>;
if (check(mid)<K) l=mid+;
else r=mid-;
}
printf("%lld\n",l);
}
return ;
}

垃圾DaD3zZ,忘开longlong,TLE成狗

【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定的更多相关文章

  1. [BZOJ4804]欧拉心算:线性筛+莫比乌斯反演

    分析 关于这道题套路到不能再套路了没什么好说的,其实发这篇博客的目的只是为了贴一个线性筛的模板. 代码 #include <bits/stdc++.h> #define rin(i,a,b ...

  2. [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)

    [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...

  3. [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)

    [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...

  4. BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演

    BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求 ...

  5. [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)

    [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...

  6. The Euler function(线性筛欧拉函数)

    /* 题意:(n)表示小于n与n互质的数有多少个,给你两个数a,b让你计算a+(a+1)+(a+2)+......+b; 初步思路:暴力搞一下,打表 #放弃:打了十几分钟没打完 #改进:欧拉函数:具体 ...

  7. BZOJ 2440 完全平方数(莫比乌斯反演+二分查找)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=23362 题意:定义含有平方数因子的数为完全平方数(平方数因子不包含 ...

  8. bzoj 4407: 于神之怒加强版【莫比乌斯反演+线性筛】

    看着就像反演,所以先推式子(默认n<m): \[ \sum_{d=1}^{n}d^k\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d] \] \[ =\sum_{d=1} ...

  9. BZOJ_2440_[中山市选2011]完全平方数_容斥原理+线性筛

    BZOJ_2440_[中山市选2011]完全平方数_容斥原理 题意: 求第k个不是完全平方数倍数的数 分析: 二分答案,转化成1~x中不是完全平方数倍数的数的个数 答案=所有数-1个质数的平方的倍数+ ...

随机推荐

  1. X200s,Debian 8(Jessie) 安装流水帐

    1. U盘启动安装 a. 因为无线网卡驱动是non-free,需要另外下载,对应X200s,文件是iwlwifi-5000-5.ucode,下完放到安装U盘的根目录下,安装时就不会再提示而是直接安装  ...

  2. MIPAV - Talairach ACPC transform

    源地址:http://blog.sina.com.cn/s/blog_64cfe24f0100h358.html 1.打开MIPAV软件,File>open image from disk> ...

  3. 苹果系统里面部署ASP.NET

    需要在global文件里设置一下 protected void Application_Start() { AreaRegistration.RegisterAllAreas(); FilterCon ...

  4. Web API删除JSON格式的文件记录

    Insus.NET的系列Web Api学习文章,这篇算是计划中最后一篇了,删除JSON格式的文件记录.前一篇<Web Api其中的PUT功能演示>http://www.cnblogs.co ...

  5. Post model至Web Api

    Post model可以解决多动态性的参数至Web Api中去,获取数据或是创建数据.如果一个对象有很多字段,需要对每一个字段进行查询或是在创建对象时,我们可以考虑使用model来作参数.这样不必在控 ...

  6. filestream read方法 循环读取固定文件

    1.循环读取啊,byte[]可以定义为1024或者2049等等,不要超过int的maxvalue就可以.然后取出来操作完再去取. FileStream stream = new FileStream( ...

  7. nginx认证配置

      rpm -qa|grep httpd-tools yum install httpd-tools ###这样不仅可以使用ab工具,还可以使用htpasswd工具了     虚拟主机 ->&g ...

  8. 我开源了一个ios应用,你们拿去随便玩

    今天开源一个ios应用,自己写的,你们拿去随便玩.地址是: https://github.com/huijimuhe/prankPro 光拿来玩不理清个来龙去脉玩的也不开心是吧,那我就给你们摆摆来龙去 ...

  9. 学习SQLite之路(二)

    下面就是真正关于数据库的一些知识了: 20160614更新 参考: http://www.runoob.com/sqlite/sqlite-tutorial.html 1. SQLite创建表: 基本 ...

  10. JAVA GC 简单总结

    GC分代 GC的英文全拼是Garbage Collection,意思是垃圾收集. Java 将堆内存分为三代来管理: - 年轻代 (Young Generation) - 年老代 (Old Gener ...