4008: [HNOI2015]亚瑟王

Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special Judge
Submit: 832  Solved:
515
[Submit][Status][Discuss]

Description

小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑。

他决定,在脱坑之前,最后再来打一盘亚瑟王。既然是最后一战,就一定要打得漂亮。众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的。作为一个非洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值。但他已经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一下当欧洲人是怎样的体验。 
本题中我们将考虑游戏的一个简化版模型。 
玩家有一套卡牌,共 n张。游戏时,玩家将 n 张卡牌排列成某种顺序,排列后将卡牌按从前往后依次编号为 1 ~  n。本题中,顺序已经确定,即为输入的顺序。每张卡牌都有一个技能。第 i 张卡牌的技能发动概率为 pi,如果成功发动,则会对敌方造成di点伤害。也只有通过发动技能,卡牌才能对敌方造成伤害。基于现实因素以及小K非洲血统的考虑,pi不会为 0,也不会为 1,即 0 < pi < 1。 一局游戏一共有 r 轮。在每一轮中,系统将从第一张卡牌开始,按照顺序依次考虑每张卡牌。在一轮中,对于依次考虑的每一张卡牌: 
1如果这张卡牌在这一局游戏中已经发动过技能,则 
1.1 如果这张卡牌不是最后一张,则跳过之(考虑下一张卡牌); 否则(是最后一张),结束这一轮游戏。 
2否则(这张卡牌在这一局游戏中没有发动过技能),设这张卡牌为第 i 张 
2.1将其以 pi的概率发动技能。 
2.2如果技能发动,则对敌方造成 di点伤害,并结束这一轮。 
2.3如果这张卡牌已经是最后一张(即 i 等于n),则结束这一轮;否则,
考虑下一张卡牌。 
请帮助小 K 求出这一套卡牌在一局游戏中能造成的伤害的期望值。 

Input

输入文件的第一行包含一个整数 T,代表测试数据组数。

接下来一共 T 组数据。 
每组数据的第一行包含两个用空格分开的整数 n和r,分别代表卡牌的张数和游戏的轮数。 
接下来 n行,每行包含一个实数和一个整数,由空格隔开,描述一张卡牌。第i 行的两个数为 pi和 di,分别代表第 i 张卡牌技能发动的概率(实数)和技能发动造成的伤害(整数)。保证 pi最多包含 4位小数,且为一个合法的概率。 

Output

对于每组数据,输出一行,包含一个实数,为这套卡牌在这一局游戏中造成的伤害的期望值。对于每一行输出,只有当你的输出和标准答案的相对误差不超过10^-8时——即|a-o|/a<=10-8时(其中a是标准答案,o是输出),你的输出才会被判为正确。

建议输出10 位小数。 

Sample Input

1
3 2
0.5000 2
0.3000 3

0.9000 1

Sample Output

3.2660250000

HINT

一共有 13 种可能的情况:

1.  第一轮中,第 1张卡牌发动技能;第二轮中,第 2张卡牌发动技能; 
概率为 0.15,伤害为5。 
2.  第一轮中,第 1张卡牌发动技能;第二轮中,第 3张卡牌发动技能; 
概率为 0.315,伤害为3。 
3.  第一轮中,第 1张卡牌发动技能;第二轮不发动技能; 
概率为 0.035,伤害为2。 
4.  第一轮中,第 2张卡牌发动技能;第二轮中,第 1张卡牌发动技能; 
概率为 0.075,伤害为5。 
5.  第一轮中,第 2张卡牌发动技能;第二轮中,第 3张卡牌发动技能; 
概率为 0.0675,伤害为4。 
6.  第一轮中,第 2张卡牌发动技能;第二轮不发动技能; 
概率为 0.0075,伤害为3。 
7.  第一轮中,第 3张卡牌发动技能;第二轮中,第 1张卡牌发动技能; 
概率为 0.1575,伤害为3。 
8.  第一轮中,第 3张卡牌发动技能;第二轮中,第 2张卡牌发动技能; 
概率为 0.04725,伤害为4。 
9.  第一轮中,第 3张卡牌发动技能;第二轮不发动技能; 
概率为 0.11025,伤害为1。 
10.  第一轮不发动技能;第二轮中,第 1张卡牌发动技能; 
概率为 0.0175,伤害为2。 
11.  第一轮不发动技能;第二轮中,第 2张卡牌发动技能; 
概率为 0.00525,伤害为3。 
12.  第一轮不发动技能;第二轮中,第 3张卡牌发动技能; 
概率为 0.011025,伤害为1。 
13.  第一轮不发动技能;第二轮亦不发动技能; 
概率为 0.001225,伤害为0。 
造成伤害的期望值为概率与对应伤害乘积之和,为 3.266025。 
 
对于所有测试数据, 1 <= T <= 444, 1 <= n <= 220, 0 <= r <= 132, 0
< pi < 1, 0 <= di <= 1000。  
除非备注中有特殊说明,数据中 pi与di均为随机生成。 
请注意可能存在的实数精度问题,并采取适当措施。 

Source

Solution

概率与期望DP

这道题相当不错,实现起来非常容易,实际想起来却很不容易

这里有相当好的讲解:  传送门

Code

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#define maxn 233
#define maxr 150
using namespace std;
int T,n,r,d[maxn];
double t;
long double ans,tmp,p[maxn],f[maxn][maxr];
int main()
{
scanf("%d",&T);
while (T--)
{
scanf("%d%d",&n,&r);
for (int i=;i<=n;i++) scanf("%lf%d",&t,&d[i]),p[i]=t;
memset(f,,sizeof(f));
f[][r]=,ans=;
for (int i=;i<=n;i++)
{
tmp=;
for (int j=;j<=r;j++)
tmp*=-p[i],
f[i+][j]+=f[i][j]*tmp,
f[i+][j-]+=f[i][j]*(-tmp),
ans+=f[i][j]*(-tmp)*d[i];
}
printf("%.10f\n",(double)ans);
}
return ;
}

【BZOJ-4008】亚瑟王 概率与期望 + DP的更多相关文章

  1. BZOJ 4008 亚瑟王(概率DP 奥妙重重)

    题意 中文题面,就不解释了 分析 显然这道题直接求期望太麻烦,想想转化问题(这转化太神了). 定义f(i,j)f(i,j)f(i,j)表示第iii张卡总共被经过jjj次的概率,有转移方程式 f(i,j ...

  2. bzoj 4008 亚瑟王 - 动态规划 - 概率与期望

    Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一 ...

  3. BZOJ 4008 亚瑟王

    Description 小K不慎被LL邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游 ...

  4. bzoj 4008 亚瑟王 期望概率dp

    对于这种看起来就比较傻逼麻烦的题,最关键的就是想怎么巧妙的设置状态数组,使转移尽可能的简洁. 一开始我想的是f[i][j]表示到第j轮第i张牌还没有被选的概率,后来发现转移起来特别坑爹,还会有重的或漏 ...

  5. BZOJ 1426--收集邮票(概率与期望&DP)

    1426: 收集邮票 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 504  Solved: 417[Submit][Status][Discuss] ...

  6. 【算法学习笔记】概率与期望DP

    本文学习自 Sengxian 学长的博客 之前也在CF上写了一些概率DP的题并做过总结 建议阅读完本文再去接着阅读这篇文章:Here 前言 单纯只用到概率的题并不是很多,从现有的 OI/ACM 比赛中 ...

  7. 概率和期望dp

    概率和期望dp 概率和期望好神啊,完全不会. 网上说概率要顺着推,期望要逆着推,然而我目前做的概率期望题正好都与此相反2333   概率: 关于概率:他非常健康 初中概率题非常恐怖.现在来思考一道题: ...

  8. 【CodeForces】913 F. Strongly Connected Tournament 概率和期望DP

    [题目]F. Strongly Connected Tournament [题意]给定n个点(游戏者),每轮游戏进行下列操作: 1.每对游戏者i和j(i<j)进行一场游戏,有p的概率i赢j(反之 ...

  9. 概率与期望dp相关

    概率与期望dp 概率 某个事件A发生的可能性的大小,称之为事件A的概率,记作P(A). 假设某事的所有可能结果有n种,每种结果都是等概率,事件A涵盖其中的m种,那么P(A)=m/n. 例如投掷一枚骰子 ...

随机推荐

  1. 定时取数据库的schema,并推送到git服务器

    写了个脚本,定时去数据库取schema,并推送到公司的git里. #daily_schema.py #/usr/bin/env python import os import datetime,tim ...

  2. Centos5.8 安装 PHP5.5 和 memcached

    安装GIT 需要先安装gcc-c++ (sudo yum install gcc-c++) sudo yum install gettext-devel expat-devel cpio perl o ...

  3. 深入理解Java之线程池

    原作者:海子 出处:http://www.cnblogs.com/dolphin0520/ 本文归作者海子和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则 ...

  4. mysql中判断记录是否存在方法比较

    我这里总结了判断记录是否存在的常用方法: sql语句:select count(*) from tablename; 然后读取count(*)的值判断记录是否存在.对于这种方法性能上有些浪费,我们只是 ...

  5. 尝试HTML + JavaScript 编写Windows App

    一直以来博文中使用最多的就是C# + XAML.进入Windows App时代,又多了一对 Javascript + HTML组合,这对于Web开发的程序员来说再熟悉不过了.其实小编也做过几年的Web ...

  6. [转]JS调用Android里面的方法,Android调用JS里面的方法

    FROM : http://blog.csdn.net/hj563308597/article/details/45197709 Android WebView 在公司Android的开发过程中遇到一 ...

  7. linux不同角色server分区方案

    服务器角色 分区建议 优点    RAID方案 单机服务器 如8G内存,300G硬盘        /boot 100-200M swap 16G,内存大小8G*2 / 80G /var 20G(也可 ...

  8. nginx学习(1):编译、安装、启动

    一.下载 从官网http://nginx.org/en/download.html 下载稳定版(目前最新稳定版是1.6.2) 二.解压 tar zxf nginx-1.6.2.tar.gzcd ngi ...

  9. 制作stick侧边栏导航效果

    其实这种效果网上好多的插件,但是我想自己实现看看,其实把思路理清实现起来就非常简单了,让我们看看: 分析: 从图中我们可以看出:右边的top=100px,那么它应该在第一个框的top+height=1 ...

  10. MATLAB调用C程序、调试和LDPC译码

    MATLAB是一个很好用的工具.利用MATLAB脚本进行科学计算也特别方便快捷.但是代码存在较多循环时,MATLAB运行速度极慢.如果不想放弃MATLAB中大量方便使用的库,又希望代码能迅速快捷的运行 ...