3437: 小P的牧场

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 705  Solved: 404
[Submit][Status][Discuss]

Description

背景

小P是个特么喜欢玩MC的孩纸。。。

描述

小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧场一直到它西边第一个控制站的所有牧场(它西边第一个控制站所在的牧场不被控制)(如果它西边不存在控制站,那么它控制西边所有的牧场),每个牧场被控制都需要一定的花费(毕竟在控制站到牧场间修建道路是需要资源的嘛~),而且该花费等于它到控制它的控制站之间的牧场数目(不包括自身,但包括控制站所在牧场)乘上该牧场的放养量,在第i个牧场建立控制站的花费是ai,每个牧场i的放养量是bi,理所当然,小P需要总花费最小,但是小P的智商有点不够用了,所以这个最小总花费就由你来算出啦。

Input

第一行一个整数 n 表示牧场数目

第二行包括n个整数,第i个整数表示ai

第三行包括n个整数,第i个整数表示bi

Output

只有一行,包括一个整数,表示最小花费

Sample Input

4
2424
3142

Sample Output

9
样例解释
选取牧场1,3,4建立控制站,最小费用为2+(2+1*1)+4=9。
数据范围与约定
对于100%的数据,1<=n<=1000000,0<ai,bi<=10000

HINT

Source

KpmCup#0 By Greens

Solution

DP + 斜率优化

BZOJ上题面炸飞了..注意N的范围是10^6...

首先,想到可以倒着推,似乎会比较简单,很多人也是这么做的,不过我是正着做的

首先是转移方程$dp[i]=min(dp[i],dp[j]+\sum_{i'=j+1}^{i-1}b[i'](i-i')+a[i])$

那么不妨预处理出两个量$sum1[i]=\sum_{i'=1}^{i}b[i']$,$sum2[i]=\sum_{i'=1}^{i}(b[i]*i)$

那么方程就可以变化为:$dp[i]=min(dp[i],dp[j]+i*(sum1[i]-sum1[j])-(sum2[i]-sum2[j])+a[i])$

那么就可以斜率优化了,化简式子得$(dp[i]-dp[j]+sum2[i]-sum2[j])/(sum1[i]-sum1[j])<i$

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 1000010
int n; int a[maxn],b[maxn]; int que[maxn],l,r;
long long sum1[maxn],sum2[maxn],dp[maxn];
double slope(int i,int j)
{
double fz=dp[i]-dp[j]+sum2[i]-sum2[j];
double fm=sum1[i]-sum1[j];
return fz/fm;
}
int main()
{
n=read();
for (int i=; i<=n; i++) a[i]=read();
for (int i=; i<=n; i++) b[i]=read(),sum1[i]=sum1[i-]+b[i],sum2[i]=sum2[i-]+(long long)i*b[i];
for (int tmp,i=; i<=n; i++)
{
while (l<r && slope(que[l],que[l+])<i) l++;
tmp=que[l];
dp[i]=dp[tmp]+i*(sum1[i]-sum1[tmp])-(sum2[i]-sum2[tmp])+a[i];
while (l<r && slope(que[r],i)<slope(que[r-],que[r])) r--;
que[++r]=i;
}
printf("%lld\n",dp[n]);
return ;
}

预处理sum2的时候,中途开longlong...有了上个题纸张的经验,我才不会再犯一遍,口亨

【BZOJ-3437】小P的牧场 DP + 斜率优化的更多相关文章

  1. BZOJ 3437 小P的牧场(斜率优化DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3437 [题目大意] n个牧场排成一行,需要在某些牧场上面建立控制站, 每个牧场上只能建 ...

  2. bzoj 3437: 小P的牧场【斜率优化】

    emmm妹想到要倒着推 先假设只在n建一个控制站,这样的费用是\( \sum_{i=1}^{n} b[i]*(n-i) \)的 然后设f[i]为在i到n键控制站,并且i一定建一个,能最多节省下的费用, ...

  3. BZOJ 3437: 小P的牧场 斜率优化DP

    3437: 小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场 ...

  4. bzoj 3437: 小P的牧场 -- 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MB Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号), ...

  5. bzoj3437 小P的牧场(斜率优化dp)

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2025  Solved: 1110[Submit][Status][Discu ...

  6. BZOJ3437 小P的牧场 【斜率优化dp】

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 1502  Solved: 836 [Submit][Status][Disc ...

  7. BZOJ 3437: 小P的牧场

    传送门 显然考虑 $dp$,设 $f[i]$ 表示前 $i$ 个牧场都被控制的最小代价 那么枚举所有 $j<i$ ,$f[i]=f[j]+val[i][j]+A[i]$ $val[i][j]$ ...

  8. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  9. BZOJ 1911: [Apio2010]特别行动队( dp + 斜率优化 )

    sum为战斗力的前缀和 dp(x) = max( dp(p)+A*(sumx-sump)2+B*(sumx-sump)+C )(0≤p<x) 然后斜率优化...懒得写下去了... ------- ...

随机推荐

  1. codevs 1215 迷宫

    时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题目描述 Description 已知 n 个整数 x1,x2,-,xn,以及一个整数 k(k<n).从 n ...

  2. noip2008 双栈排序

    题目描述 Description \(Tom\)最近在研究一个有趣的排序问题.如图所示,通过\(2\)个栈\(S_1\)和\(S_2\),\(Tom\)希望借助以下\(4\)种操作实现将输入序列升序排 ...

  3. JavaScript中的this关键字

    在JavaScript中,函数的this关键字的行为与其他语言相比有很多不同.在JavaScript的严格模式和非严格模式下也略有区别. 在绝大多数情况下,函数的调用方式决定了this的值.this不 ...

  4. Power of Two

    Given an integer, write a function to determine if it is a power of two. bool isPowerOfTwo(int n) { ...

  5. ASP.NET MVC 教程-MVC简介

    ASP.NET 是一个使用 HTML.CSS.JavaScript 和服务器脚本创建网页和网站的开发框架. ASP.NET 支持三种不同的开发模式:Web Pages(Web 页面).MVC(Mode ...

  6. TinyFrame升级之七:重构Repository和Unit Of Work

    首先,重构的想法来源于以下文章:Correct use of Repository and Unit Of Work patterns in ASP.NET MVC,因为我发现在我的框架中,对Unit ...

  7. 项目分享二:APP 小红点中数字的处理

    小红点,是 APP 中最常见的一个功能,我们先来看一下面的案例,下图中,待评价的商品有 2 个,点击“评价晒单”按钮进行评价后,那么待评价数量应该变成 1,那么这个功能是如何去实现的呢? 一般来说,实 ...

  8. 利用PhotoShop将Font-Awesome转为图片格式

    介绍如何将Font-Awesome等字体图标转换为图片格式,使用PHOTPSHOP很简单. 网上找了很多,都比较麻烦.别问为什么要这么做,因为你还没遇到需要的时候. 下载Font-Awesome字体库 ...

  9. 在SSIS 2012中使用CDC(数据变更捕获)

    最新项目稍有空隙,开始研究SQL Server 2012和2014的一些BI特性,参照(Matt)的一个示例,我们开始体验SSIS中的CDC(Change Data Capture,变更数据捕获). ...

  10. [BZOJ1579][Usaco2009 Feb]Revamping Trails 道路升级(二维最短路问题)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1579 分析: 设d[i][j]表示从1走到i.改了j条边的最短路径长度 如果设i相连的 ...