3437: 小P的牧场

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 705  Solved: 404
[Submit][Status][Discuss]

Description

背景

小P是个特么喜欢玩MC的孩纸。。。

描述

小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧场一直到它西边第一个控制站的所有牧场(它西边第一个控制站所在的牧场不被控制)(如果它西边不存在控制站,那么它控制西边所有的牧场),每个牧场被控制都需要一定的花费(毕竟在控制站到牧场间修建道路是需要资源的嘛~),而且该花费等于它到控制它的控制站之间的牧场数目(不包括自身,但包括控制站所在牧场)乘上该牧场的放养量,在第i个牧场建立控制站的花费是ai,每个牧场i的放养量是bi,理所当然,小P需要总花费最小,但是小P的智商有点不够用了,所以这个最小总花费就由你来算出啦。

Input

第一行一个整数 n 表示牧场数目

第二行包括n个整数,第i个整数表示ai

第三行包括n个整数,第i个整数表示bi

Output

只有一行,包括一个整数,表示最小花费

Sample Input

4
2424
3142

Sample Output

9
样例解释
选取牧场1,3,4建立控制站,最小费用为2+(2+1*1)+4=9。
数据范围与约定
对于100%的数据,1<=n<=1000000,0<ai,bi<=10000

HINT

Source

KpmCup#0 By Greens

Solution

DP + 斜率优化

BZOJ上题面炸飞了..注意N的范围是10^6...

首先,想到可以倒着推,似乎会比较简单,很多人也是这么做的,不过我是正着做的

首先是转移方程$dp[i]=min(dp[i],dp[j]+\sum_{i'=j+1}^{i-1}b[i'](i-i')+a[i])$

那么不妨预处理出两个量$sum1[i]=\sum_{i'=1}^{i}b[i']$,$sum2[i]=\sum_{i'=1}^{i}(b[i]*i)$

那么方程就可以变化为:$dp[i]=min(dp[i],dp[j]+i*(sum1[i]-sum1[j])-(sum2[i]-sum2[j])+a[i])$

那么就可以斜率优化了,化简式子得$(dp[i]-dp[j]+sum2[i]-sum2[j])/(sum1[i]-sum1[j])<i$

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 1000010
int n; int a[maxn],b[maxn]; int que[maxn],l,r;
long long sum1[maxn],sum2[maxn],dp[maxn];
double slope(int i,int j)
{
double fz=dp[i]-dp[j]+sum2[i]-sum2[j];
double fm=sum1[i]-sum1[j];
return fz/fm;
}
int main()
{
n=read();
for (int i=; i<=n; i++) a[i]=read();
for (int i=; i<=n; i++) b[i]=read(),sum1[i]=sum1[i-]+b[i],sum2[i]=sum2[i-]+(long long)i*b[i];
for (int tmp,i=; i<=n; i++)
{
while (l<r && slope(que[l],que[l+])<i) l++;
tmp=que[l];
dp[i]=dp[tmp]+i*(sum1[i]-sum1[tmp])-(sum2[i]-sum2[tmp])+a[i];
while (l<r && slope(que[r],i)<slope(que[r-],que[r])) r--;
que[++r]=i;
}
printf("%lld\n",dp[n]);
return ;
}

预处理sum2的时候,中途开longlong...有了上个题纸张的经验,我才不会再犯一遍,口亨

【BZOJ-3437】小P的牧场 DP + 斜率优化的更多相关文章

  1. BZOJ 3437 小P的牧场(斜率优化DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3437 [题目大意] n个牧场排成一行,需要在某些牧场上面建立控制站, 每个牧场上只能建 ...

  2. bzoj 3437: 小P的牧场【斜率优化】

    emmm妹想到要倒着推 先假设只在n建一个控制站,这样的费用是\( \sum_{i=1}^{n} b[i]*(n-i) \)的 然后设f[i]为在i到n键控制站,并且i一定建一个,能最多节省下的费用, ...

  3. BZOJ 3437: 小P的牧场 斜率优化DP

    3437: 小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场 ...

  4. bzoj 3437: 小P的牧场 -- 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MB Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号), ...

  5. bzoj3437 小P的牧场(斜率优化dp)

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2025  Solved: 1110[Submit][Status][Discu ...

  6. BZOJ3437 小P的牧场 【斜率优化dp】

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 1502  Solved: 836 [Submit][Status][Disc ...

  7. BZOJ 3437: 小P的牧场

    传送门 显然考虑 $dp$,设 $f[i]$ 表示前 $i$ 个牧场都被控制的最小代价 那么枚举所有 $j<i$ ,$f[i]=f[j]+val[i][j]+A[i]$ $val[i][j]$ ...

  8. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  9. BZOJ 1911: [Apio2010]特别行动队( dp + 斜率优化 )

    sum为战斗力的前缀和 dp(x) = max( dp(p)+A*(sumx-sump)2+B*(sumx-sump)+C )(0≤p<x) 然后斜率优化...懒得写下去了... ------- ...

随机推荐

  1. Java类加载和类反射回顾

    今天学习Spring,突然想重新复习一下Java类加载和类反射的.巩固一下底层原理.部分参考了李刚老师的<疯狂Java讲义>和陈雄华.林开雄的<Spring3.x企业应用开发实战&g ...

  2. 发布园友设计的新款博客皮肤BlueSky

    园友#a为大家设计了一款“简单.纯粹,一点淡雅,一点宁静”的博客皮肤——BlueSky,欢迎您的享用!感谢#a的精心设计! 如果您有兴趣为大家设计博客皮肤,请将您设计的html/css/images文 ...

  3. 从零开始搭建架构实施Android项目

    我们先假设一个场景需求:刚有孩子的爸爸妈妈对用照片.视频记录宝宝成长有强烈的意愿,但苦于目前没有一款专门的手机APP做这件事.A公司洞察到市场需求,要求开发团队尽快完成Android客户端的开发.以下 ...

  4. DB2和Oracle区别

    转 http://blog.chinaunix.net/uid-7374279-id-2057574.html 写在前面:今天客户来访(日本人),问我DB2和Oracle区别.因为不是DBA(勉强的理 ...

  5. MPLS基础

    1.1  MPLS简介 MPLS(Multiprotocol Label Switching,多协议标签交换)是一种新兴的IP骨干网技术.MPLS在无连接的IP网络上引入面向连接的标签交换概念,将第三 ...

  6. 使用socket()函数创建套接字

    在Linux中,一切都是文件,除了文本文件.源文件.二进制文件等,一个硬件设备也可以被映射为一个虚拟的文件,称为设备文件.例如,stdin 称为标准输入文件,它对应的硬件设备一般是键盘,stdout ...

  7. Matlab中函数定义方法

    Matlab自定义函数的六种方法 n1.函数文件+调用函数(命令)文件:需单独定义一个自定义函数的M文件: n2.函数文件+子函数:定义一个具有多个自定义函数的M文件: n3.Inline:无需M文件 ...

  8. java中的URLConnection

    *URLConnection是个抽象类,它有两个直接子类分别是HttpURLConnection和JarURLConnection.另外一个重要的类是URL,通常URL可以通过传给构造器一个Strin ...

  9. 【jQuery】Jquery.cookie()

    注意:如果不设置path,默认为当前路径,新建cookie $.cookie('name', 'value'); 新建带限制时间cookie $.cookie('name', 'value', { e ...

  10. springMvc静态资源拦截问题

    测试的时候发现:如果直接访问web项目的html等静态资源,不能访问 原因如下: 当web.xml中url-pattern配置为"/"时,会导致系统中的静态资源被拦截 如何解决: ...