[问题2014S10]  解答

先证明一个简单的引理.

引理  设 \(\lambda_0\) 是 \(n\) 阶方阵 \(A\) 的特征值, 则对任意的正整数 \(k\), Jordan 块 \(J_k(\lambda_0)\) 在 \(A\) 的 Jordan 标准型 \(J\) 中出现的个数为 \[\mathrm{rank}\big((A-\lambda_0I_n)^{k-1}\big)+\mathrm{rank}\big((A-\lambda_0I_n)^{k+1}\big)-2\,\mathrm{rank}\big((A-\lambda_0I_n)^k\big),\] 其中约定 \(\mathrm{rank}\big((A-\lambda_0I_n)^0\big)=n\).

引理的证明  注意到 \(\mathrm{rank}\big((J-\lambda_0I_n)^{k-1}\big)-\mathrm{rank}\big((J-\lambda_0I_n)^k\big)\) 是 \(J\) 中关于特征值 \(\lambda_0\) 的阶数大于等于 \(k\) 的 Jordan 块的个数; 同理 \(\mathrm{rank}\big((J-\lambda_0I_n)^k\big)-\mathrm{rank}\big((J-\lambda_0I_n)^{k+1}\big)\) 是 \(J\) 中关于特征值 \(\lambda_0\) 的阶数大于等于 \(k+1\) 的 Jordan 块的个数, 因此 \(J\) 中关于特征值 \(\lambda_0\) 的阶数等于 \(k\) 的 Jordan 块的个数为 \begin{eqnarray*} & & \Big[\mathrm{rank}\big((J-\lambda_0I_n)^{k-1}\big)-\mathrm{rank}\big((J-\lambda_0I_n)^k\big)\Big]-\Big[\mathrm{rank}\big((J-\lambda_0I_n)^k\big)-\mathrm{rank}\big((J-\lambda_0I_n)^{k+1}\big)\Big] \\ &=& \mathrm{rank}\big((J-\lambda_0I_n)^{k-1}\big)+\mathrm{rank}\big((J-\lambda_0I_n)^{k+1}\big)-2\,\mathrm{rank}\big((J-\lambda_0I_n)^k\big) \\ &=& \mathrm{rank}\big((A-\lambda_0I_n)^{k-1}\big)+\mathrm{rank}\big((A-\lambda_0I_n)^{k+1}\big)-2\,\mathrm{rank}\big((A-\lambda_0I_n)^k\big). \quad\Box \end{eqnarray*}

原题的证明  我们只证明充分性, 必要性是显然的.

设 \(P,Q\) 为 \(n\) 阶非异阵, 使得 \(PAQ=A_1=\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}\) 为 \(A\) 的相抵标准型. 令 \(B_1=Q^{-1}BP^{-1}\), 则 \[AB=P^{-1}A_1Q^{-1}QB_1P=P^{-1}\big(A_1B_1\big)P,\] \[BA=QB_1PP^{-1}A_1Q^{-1}=Q\big(B_1A_1\big)Q^{-1}.\] 注意到题目的条件和结论在相似关系下不改变, 故不妨设 \(A=\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}\) 为相抵标准型. 再对 \(B\) 进行分块: \(B=\begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}\), 其中 \(B_{11}\) 为 \(r\) 阶方阵, \(B_{22}\) 为 \(n-r\) 阶方阵, 则 \[AB=\begin{bmatrix} B_{11} & B_{12} \\ 0 & 0 \end{bmatrix},\,\,BA=\begin{bmatrix} B_{11} & 0 \\ B_{21} & 0 \end{bmatrix},\] 从而有 \[|\lambda I_n-AB|=|\lambda I_n-BA|=\lambda^{n-r}|\lambda I_r-B_{11}|,\] 即 \(AB\) 和 \(BA\) 的全体特征值相同, 都等于 \(B_{11}\) 的全部特征值再加上 \(n-r\) 个 \(0\). 对 \(B_{11}\) 的 (也即 \(AB\) 和 \(BA\) 的) 任意非零特征值 \(\lambda_0\), 经简单计算可得 \[(AB-\lambda_0I_n)^k=\begin{bmatrix} (B_{11}-\lambda_0I_r)^k & * \\ 0 & (-\lambda_0)^kI_{n-r} \end{bmatrix},\] \[(BA-\lambda_0I_n)^k=\begin{bmatrix} (B_{11}-\lambda_0I_r)^k & 0 \\ * & (-\lambda_0)^kI_{n-r} \end{bmatrix},\] 从而有 \[\mathrm{rank}\big((AB-\lambda_0I_n)^k\big)=\mathrm{rank}\big((B_{11}-\lambda_0I_r)^k\big)+(n-r),\] \[\mathrm{rank}\big((BA-\lambda_0I_n)^k\big)=\mathrm{rank}\big((B_{11}-\lambda_0I_r)^k\big)+(n-r),\] 因此对任意的正整数 \(k\), \[\mathrm{rank}\big((AB-\lambda_0I_n)^k\big)=\mathrm{rank}\big((BA-\lambda_0I_n)^k\big).\] 由引理知, Jordan 块 \(J_k(\lambda_0)\,(k\geq 1)\) 在 \(AB\) 和 \(BA\) 的 Jordan 标准型中出现的个数相等. 又由题目条件和引理知, Jordan 块 \(J_k(0)\,(k\geq 1)\) 在 \(AB\) 和 \(BA\) 的 Jordan 标准型中出现的个数相等, 因此 \(AB\) 和 \(BA\) 具有相同的 Jordan 标准型, 从而 \(AB\) 与 \(BA\) 相似.  \(\Box\)

[问题2014S10] 解答的更多相关文章

  1. 精选30道Java笔试题解答

    转自:http://www.cnblogs.com/lanxuezaipiao/p/3371224.html 都 是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我 ...

  2. 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团

    精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...

  3. 【字符编码】Java字符编码详细解答及问题探讨

    一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...

  4. spring-stutrs求解答

    这里贴上applicationContext里的代码: <?xml version="1.0" encoding="UTF-8"?> <bea ...

  5. JavaScript Bind()趣味解答 包懂~~

    首先声明一下,这个解答是从Segmentfault看到的,挺有意思就记录下来.我放到最下面: bind() https://developer.mozilla.org/zh-CN/docs/Web/J ...

  6. CMMI4级实践中的5个经典问题及解答

    这五个问题相当经典而且比较深,需要做过CMMI4.5级的朋友才能看懂这些问题.这5个问题是一位正在实践CMMI4级的朋友提出来的,而解答则是我的个人见解. 五个疑问是:   A.流程,子流程部分不明白 ...

  7. 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final

    1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...

  8. 知乎大牛的关于JS解答

    很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...

  9. [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)

    [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1)  当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...

随机推荐

  1. CMS .NET 程序框架 从2.0/3.5升级到4.0 版本后 需要调整的地方

    问题一: document.forms1.action 不可使用 需要修改程 document.forms[0] .NET 程序框架 从2.0/3.5升级到4.0 版本后,document.forms ...

  2. python的内存管理机制

    先从较浅的层面来说,Python的内存管理机制可以从三个方面来讲 (1)垃圾回收 (2)引用计数 (3)内存池机制 一.垃圾回收: python不像C++,Java等语言一样,他们可以不用事先声明变量 ...

  3. Linux学习笔记---用户管理---组group

    组管理: (1)/etc/group 格式: 组名:密码:GID:组员

  4. 【iCore3 双核心板_ uC/OS-III】例程五:软件定时器

    实验指导书及代码包下载: http://pan.baidu.com/s/1eSHenjs iCore3 购买链接: https://item.taobao.com/item.htm?id=524229 ...

  5. 同时使用python2和Python3

    问题:thrift生成的是python2代码,之前使用的是Python3因此需要同时使用两个版本. 方案:将python3的可执行文件重命名为python3(默认为Python),这样使用pyhton ...

  6. EL表达式与JSTL

    内容包括 EL表达式 EL函数库 JSTL 核心标签库 格式化标签库 SQL标签库 XML标签库 自定义标签库 EL表达式 EL是Expression Language的是缩写,是JSP页面编写的一种 ...

  7. qmake的使用(可设置c编译器flag参数)

    本文由乌合之众 lym瞎编,欢迎转载 my.oschina.net/oloroso***还是先说一下当前的系统环境:Ubuntu 14.04 + Qt5.4如果没有安装过QT,可以安装下面几个qt软件 ...

  8. swt小知识点

    1 换java小图标 Image image=this.getToolkit().getImage("d:/pu1.jpg"); setIconImage(image); 2 去掉 ...

  9. python file模块 替换输入内容脚本

    root@python-10:/home/liujianzuo/python/test# ls passwd rc.local test1 root@python-10:/home/liujianzu ...

  10. CSS3动画产生圆圈由小变大向外扩散的效果

    涉及到 CSS3 的动画(animation).2D 转换(transform: scale),具体如代码所示. github: https://github.com/wind-stone/CSS3- ...